




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
物理化学电子教案——第三章TheSecondLawofThermodynamics不可能把热从低温物体传到高温物体,而不引起其它变化第三章
热力学第二定律§3.1
自发变化的共同特征§3.2
热力学第二定律§3.3
Carnot定理§3.4
熵的概念§3.5
Clausius不等式与熵增加原理§3.6
热力学基本方程与T-S图§3.7
熵变的计算§3.8熵和能量退降§3.9
热力学第二定律的本质和熵的统计意义第三章热力学第二定律§3.10
Helmholtz和Gibbs自由能§3.11
变化的方向与平衡条件§3.13
几个热力学函数间的关系§3.14热力学第三定律及规定熵*§3.15绝对零度不能到达的原理*§3.16不可逆过程热力学简介*§3.17
信息熵浅释§3.12
的计算示例§3.1
自发变化的共同特征热力学第一定律主要解决能量转化及在转化过程中各种能量具有的当量关系,但热力学第一定律无法确定过程的方向和限度,这是被历史经验所证实的。十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot)就曾经企图用△H的符号作为化学反应方向的判据。他们认为自发化学反应的方向总是与放热的方向一致,而吸热反应是不能自动进行的。虽然这能符合一部分反应,但后来人们发现有不少吸热反应也能自动进行,如众所周知的水煤气反应:某些盐的溶解:NaNO2。§3.1自发变化的共同特征——不可逆性自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可自动进行,这种变化称为自发变化。自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。例如:(1)
焦耳热功当量中功自动转变成热;(2)
气体向真空膨胀;(3) 热量从高温物体传入低温物体;(4) 浓度不等的溶液混合均匀,乙醇与水的混合;(5) 锌片与硫酸铜的置换反应等。它们的逆过程都不能自动进行。当借助外力,系统恢复原状后,会给环境留下不可磨灭的影响。§3.2热力学第二定律Clausius的说法:Kelvin的说法:第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
“不可能把热从低温物体传到高温物体,而不引起其他变化”
“不可能从单一热源取出热使之完全变为功,而不发生其他的变化”后来被Ostward表述为:“第二类永动机是不可能造成的”。3.2
热力学第二定律(TheSecondLawofThermodynamics)说明:1.各种说法一定是等效的。若克氏说法不成立,则开氏说法也一定不成立。2.要理解整个说法的完整性切不可断章取义。如不能误解为热不能转变为功,因为热机就是一种把热转变为功的装置;也不能认为热不能完全转变为功,因为在状态发生变化时,热是可以完全转变为功的(如理想气体恒温膨胀即是一例)。3.虽然第二类永动机并不违背能量守恒原则,但它的本质却与第一类永动机没什么区别。P1,V1
T1
P2,V2
T1
恒温可逆过程
U1=0Q1=–W1=nRT1ln(V2/V1)P3,V3
T2
绝热可逆过程P4,V4
T2
U3=0Q3=–W3=nRT2ln(V4/V3)Q2=0W2=U2=nCv,m(T2-T1)Q4=0W4=U4=nCv,m(T1-T2)§3.3 Carnot定理卡诺循环Carnot定理:Carnot定理推论:Carnot定理的意义:(2)原则上也解决了化学反应的方向问题。(1)引入了一个不等号,原则上解决了热机效率的极限值问题;§3.3 Carnot定理所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。所有工作于同温热源与同温冷源之间的可逆热机,其热机效率都相等,即与热机的工作物质无关。§3.3 Carnot定理高温热源低温热源(a)假设§3.3 Carnot定理高温热源低温热源(b)从低温热源吸热高温热源得到热这违反了Clausius说法,只有§3.4
熵的概念从卡诺循环得到的结论任意可逆循环的热温商熵的引出熵的定义从卡诺循环得到的结论或:即卡诺循环中,热效应与温度商值的加和等于零。§3.4熵的概念从Carnot循环得到的结论:对于任意的可逆循环,都可以分解为若干个小Carnot循环。即Carnot循环中,热效应与温度商值的加和等于零。先以P,Q两点为例任意可逆循环的热温商任意可逆循环PVO=OWQMXO’=O’YN证明如下:同理,对MN过程作相同处理,使MXO’YN折线所经过程作功与MN过程相同。(2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线,(1)在任意可逆循环的曲线上取很靠近的PQ过程(3)在P,Q之间通过O点作等温可逆膨胀线VW这样使PQ过程与PVOWQ过程所作的功相同。任意可逆循环使两个三角形PVO和OWQ的面积相等,VWYX就构成了一个Carnot循环。用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环从而使众多小Carnot循环的总效应与任意可逆循环的封闭曲线相当前一循环的等温可逆膨胀线就是下一循环的绝热可逆压缩线(如图所示的虚线部分),这样两个绝热过程的功恰好抵消。所以任意可逆循环的热温商的加和等于零,或它的环程积分等于零。任意可逆循环分为小Carnot循环任意可逆循环分为小Carnot循环
任意可逆循环用一闭合曲线代表任意可逆循环。将上式分成两项的加和在曲线上任意取A,B两点,把循环分成AB和BA两个可逆过程。根据任意可逆循环热温商的公式:熵的引出说明任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关,这个热温商具有状态函数的性质。移项得:任意可逆过程熵的定义
Clausius根据可逆过程的热温商值决定于始终态而与可逆过程无关这一事实定义了“熵”(entropy)这个函数,用符号“S”表示,单位为:对微小变化这几个熵变的计算式习惯上称为熵的定义式,即熵的变化值可用可逆过程的热温商值来衡量。或设始、终态A,B的熵分别为和
,则:§3.5Clausius不等式与熵增加原理Clausius
不等式——
热力学第二定律的数学表达式熵增加原理Clausius不等式设温度相同的两个高、低温热源间有一个可逆热机和一个不可逆热机。根据Carnot定理:则推广为与n个热源接触的任意不可逆过程,得:则:Clausius不等式或设有一个循环,为不可逆过程,为可逆过程,整个循环为不可逆循环。则有Clausius不等式如AB为可逆过程将两式合并得
Clausius不等式:是实际过程的热效应,T是环境温度。若是不可逆过程,用“>”号,可逆过程用“=”号,这时环境与系统温度相同。Clausius不等式这些都称为Clausius
不等式,也可作为热力学第二定律的数学表达式。或对于微小变化:熵增加原理对于绝热系统 等号表示绝热可逆过程,不等号表示绝热不可逆过程。如果是一个隔离系统,环境与系统间既无热的交换,又无功的交换,则熵增加原理可表述为:所以Clausius
不等式为熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使系统的熵增加。或者说在绝热条件下,不可能发生熵减少的过程一个隔离系统的熵永不减少。对于隔离系统 等号表示可逆过程,系统已达到平衡;不等号表示不可逆过程,也是自发过程。可以用来判断自发变化的方向和限度Clausius
不等式的意义Clausius
不等式的意义有时把与体系密切相关的环境也包括在一起,用来判断过程的自发性,即:“>”号为自发过程“=”号为可逆过程体系环境隔离体系注意:熵是体系的性质,体系的熵变为可逆过程的热温商,而环境的熵变则不然,它应等于实际过程的热温商。(1)熵是系统的状态函数,是容量性质。(3)在绝热过程中,若过程是可逆的,则系统的熵不变。若过程是不可逆的,则系统的熵增加。绝热不可逆过程向熵增加的方向进行,当达到平衡时,熵达到最大值。(2)可以用Clausius不等式来判别过程的可逆性熵的特点(4)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,一切能自动进行的过程都引起熵的增大。§3.6
热力学基本方程与T-S图热力学的基本方程——
第一定律与第二定律的联合公式根据热力学第一定律若不考虑非膨胀功根据热力学第二定律所以有这是热力学第一与第二定律的联合公式,也称为热力学基本方程。§3.6
热力学基本方程与T-S图熵是热力学能和体积的函数,即热力学基本方程可表示为所以有或或T-S图 及其应用根据热力学第二定律系统从状态A到状态B,在T-S图上曲线AB下的面积就等于系统在该过程中的热效应。什么是T-S图?以T为纵坐标、S为横坐标所作的表示热力学过程的图称为T-S图,或称为温-熵图。热机所作的功W为闭合曲线ABCDA所围的面积。图中ABCDA表示任一可逆循环。
CDA是放热过程,所放之热等于CDA曲线下的面积T-S图 及其应用
ABC是吸热过程,所吸之热等于ABC曲线下的面积任意循环的热机效率不可能大于EGHL所代表的Carnot热机的效率图中ABCD表示任一循环过程。
EG线是高温(T1)等温线T-S图 及其应用
ABCD的面积表示循环所吸的热和所做的功(c)LH是低温(T2)等温线
ABCD代表任意循环
EGHL代表Carnot循环GN和EM是绝热可逆过程的等熵线T-S图 及其应用(c)T-S
图的优点:(1)既显示系统所作的功,又显示系统所吸取或释放的热量。p-V图只能显示所作的功。(2)既可用于等温过程,也可用于变温过程来计算系统可逆过程的热效应;而根据热容计算热效应不适用于等温过程。
§3.7
熵变的计算 等温过程中熵的变化值 非等温过程中熵的变化值* 热力学函数间的关系计算熵的变化值等温过程中熵的变化值(1)理想气体等温可逆变化对于不可逆过程,应设计始终态相同的可逆过程来计算熵的变化值。等温过程中熵的变化值(2)等温、等压可逆相变(若是不可逆相变,应设计始终态相同的可逆过程)(3)理想气体(或理想溶液)的等温混合过程,并符合分体积定律,即等温过程中熵的变化例1:1mol理想气体在等温下通过:(1)可逆膨胀,(2)真空膨胀,体积增加到10倍,分别求其熵变,并判断过程的可逆性。解:(1)可逆膨胀(1)为可逆过程。等温过程中熵的变化例1:1mol理想气体在等温下通过:(1)可逆膨胀,(2)真空膨胀,体积增加到10倍,分别求其熵变,并判断过程的可逆性。解:(2)真空膨胀(2)为不可逆过程。熵是状态函数,始终态相同熵变也相同,所以:(系统未吸热,也未做功)例2:求下述过程熵变解:如果是不可逆相变,可以设计可逆相变求值。已知H2O(l)在汽化时吸热 显然例3:在273K时,将一个的盒子用隔板一分为二,解法1求抽去隔板后,两种气体混合过程的熵变?例3:在273K时,将一个的盒子用隔板一分为二,解法2求抽去隔板后,两种气体混合过程的熵变?非等温过程中熵的变化值(1)物质的量一定的可逆等容、变温过程(2)物质的量一定的可逆等压、变温过程非等温过程中熵的变化(3)物质的量一定从 到 的过程。这种情况一步无法计算,要分两步计算。有多种分步方法:1.先等温后等容2.先等温后等压*3.先等压后等容变温过程的熵变1.先等温后等容2.先等温后等压*3.先等压后等容§3.8
熵和能量退降热力学第一定律表明:一个实际过程发生后,能量总值保持不变。热力学第二定律表明:在一个不可逆过程中,系统的熵值增加。能量总值不变,但由于系统的熵值增加,说明系统中一部分能量丧失了作功的能力,这就是能量“退降”。
能量“退降”的程度,与熵的增加成正比熵增加的实质——
能量退化1、焦耳实验重力作功A系统内能UA'Q22、热传导T1
>
T2đQ借助另一低温热源T0,运转卡诺机
T0đQdA1dA2T1>T2dA1>dA2能量退化的程度与熵的增量成正比克劳修斯总结热力学第一定律:宇宙的能量守恒。热力学第二定律:宇宙的熵趋于极大。<A熵和能量退化能量有“品位”高低之分,能用于作功的份额越多,品位越高。不可逆过程的一个后果是:使一定的能量从能做功的形式变为不能做功的形式,即能量“退化”了。退化的能量为
Ed=T0D
S
T0
-最冷热源的温度
DS
-不可逆过程引起的熵的增量自然过程的不可逆性→熵增加→自然界中越来越多的能量不能用来做功了以功热转换为例,设有:欲将此热(内能)取出再对外作功,由第二定律T0—最低温热源温度T—该传热系统温度退化的能量:将此热量传入一恒温系统功热转换过程中系统的熵变有三个热源热源热源热源热机做的最大功为热机做的最大功为其原因是经过了一个不可逆的热传导过程功变为热是无条件的而热不能无条件地全变为功热和功即使数量相同,但“质量”不等,功是“高质量”的能量高温热源的热与低温热源的热即使数量相同,但“质量”也不等,高温热源的热“质量”较高,做功能力强。从高“质量”的能贬值为低“质量”的能是自发过程。§3.9热力学第二定律的本质和熵的统计意义热力学第二定律的本质热是分子混乱运动的一种表现,而功是分子有序运动的结果。功转变成热是从规则运动转化为不规则运动,混乱度增加,是自发的过程;而要将无序运动的热转化为有序运动的功就不可能自动发生。热与功转换的不可逆性气体混合过程的不可逆性将N2和O2放在一盒内隔板的两边,抽去隔板,N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程,是自发的过程,其逆过程决不会自动发生。热力学第二定律的本质热传导过程的不可逆性 处于高温时的系统,分布在高能级上的分子数较集中; 而处于低温时的系统,分子较多地集中在低能级上。当热从高温物体传入低温物体时,两物体各能级上分布的分子数都将改变,总的分子分布的花样数增加,是一个自发过程,而逆过程不可能自动发生。热力学第二定律的本质从以上几个不可逆过程的例子可以看出:热力学第二定律的本质一切不可逆过程都是向混乱度增加的方向进行,而熵函数可以作为系统混乱度的一种量度,这就是热力学第二定律所阐明的不可逆过程的本质。熵和热力学概率的关系——Boltzmann公式 热力学概率就是实现某种宏观状态的微观状态数,通常用表示。数学概率是热力学概率与总的微观状态数之比。数学概率=热力学概率微观状态数的总和理想气体绝热、自由膨胀——2个分子左右微观态左abab4右baab宏观态1113概率1/42/41/4ab左右微观态左abcabacbcabc8右cbabcacababc宏观态4概率1/83/83/81/8abc理想气体绝热、自由膨胀——3个分子abcd4个分子微观态数全部在左边的宏观态概率—1/1620个分子微观态数220
全部在左边的宏观态概率—百万分之一1/1061mol分子全部在左边的宏观态概率0分子数越多,两侧分子数相等或几乎相等的宏观态对应的微观态数占的比例越大——出现的可能性越大。实际观测到的宏观平衡态,就是出现概率最大的状态。200个分子微观态数2200
,全部在左边的宏观态概率1/1060结论1、孤立系统的平衡态最大的状态。2、孤立系统某时刻宏观态对应不最大非平衡态顺其自然一定会过渡到平衡态。3、
越大系统的无序性越大熵越大熵——系统的无序性的量度!Boltzmann公式这与熵的变化方向相同。 另外,热力学概率和熵S都是热力学能U,体积V和粒子数N的函数,两者之间必定有某种联系,用函数形式可表示为: 宏观状态实际上是大量微观状态的平均,自发变化的方向总是向热力学概率增大的方向进行。Boltzmann公式Boltzmann认为这个函数应该有如下的对数形式:这就是Boltzmann公式,式中k是Boltzmann常数。
Boltzmann公式把热力学宏观量S和微观量概率联系在一起,使热力学与统计热力学发生了关系,奠定了统计热力学的基础。因熵是容量性质,具有加和性,而复杂事件的热力学概率应是各个简单、互不相关事件概率的乘积,所以两者之间应是对数关系。熵的统计解释
体系的熵值大小与体系的无序度有关。因而凡是能使其无序度增加的因素都会对体系的熵值有贡献。同种物质聚集态不同,其混乱度不同,熵值也不相同。气态最无序,液态次之,固态较为有序,故:S(g)>S(l)>S(s)。因温度升高,而使混乱度增加,其相应增加的熵称为热熵。而由分子空间构型的变化而产生的熵叫构型熵。§2.8Helmholtz自由能和Gibbs自由能Helmholtz自由能Gibbs自由能为什么要定义新函数?热力学第一定律引出了热力学能这个状态函数,为了处理热化学中的问题,又定义了焓。热力学第二定律引出了熵这个状态函数,但用熵作为判据时,系统必须是隔离系统,也就是说必须同时考虑系统和环境的熵变,这很不方便。通常反应总是在等温、等压或等温、等容条件下进行,有必要引入新的热力学函数,利用系统自身状态函数的变化,来判断自发变化的方向和限度。
Helmholtz自由能根据第二定律根据第一定律这是热力学第一定律和第二定律的联合公式得:将代入得:当即系统的始、终态温度与环境温度相等
Helmholtz自由能
Helmholtz(HermannvonHelmholtz,1821~1894,德国人)定义了一个状态函数
A称为Helmholtz自由能(Helmholtzfreeenergy),是状态函数,具有容量性质。则即:在等温过程中,封闭系统对外所作的功等于或小于系统Helmholtz自由能的减少值。
Helmholtz自由能等号表示可逆过程,即:
在等温、可逆过程中,系统对外所作的最大功等于系统Helmholtz自由能的减少值,所以把A称为功函(workfunction)。根据若是不可逆过程,系统所作的功小于A的减少值
Helmholtz自由能判据如果系统在等温、等容且不作其他功的条件下或等号表示可逆过程,小于号表示是一个自发的不可逆过程,即自发变化总是朝着Helmholtz自由能减少的方向进行。这就是Helmholtz自由能判据:
Gibbs自由能当当始、终态压力与外压相等,即 根据热力学第一定律和第二定律的联合公式得:
Gibbs自由能
Gibbs(GibbsJ.W.,1839~1903)定义了一个状态函数:
G称为Gibbs自由能(Gibbsfreeenergy),是状态函数,具有容量性质。则等号表示可逆过程即:等温、等压、可逆过程中,封闭系统对外所作的最大非膨胀功等于系统Gibbs自由能的减少值。
Gibbs自由能若是不可逆过程,系统所作的非膨胀功小于Gibbs自由能的减少值。如果系统在等温、等压、且不作非膨胀功的条件下,或
Gibbs自由能判据即自发变化总是朝着Gibbs自由能减少的方向进行,这就是Gibbs自由能判据,系统不可能自动发生dG>0的变化。因为大部分实验在等温、等压条件下进行,所以这个判据特别有用。
Gibbs自由能在等温、等压、可逆电池反应中式中n为电池反应中电子的物质的量,E为可逆电池的电动势,F为Faraday常数。这是联系热力学和电化学的重要公式。因电池对外做功,E为正值,所以加“-”号。§3.11 变化的方向和平衡条件(1)熵判据在五个热力学函数U,H,S,A和G中,U和S是最基本的,其余三个是衍生的。
熵具有特殊地位,因为所有判断反应方向和过程可逆性的讨论最初都是从熵开始的,一些不等式是从Clausius不等式引入的。但由于熵判据用于隔离系统,既要考虑系统的熵变,又要考虑环境的熵变,使用不太方便。熵判据对于绝热系统
等号表示可逆,不等号表示不可逆,但不能判断其是否自发。
因为绝热不可逆压缩过程是个非自发过程,但其熵变值也大于零。对于隔离系统(保持U,V不变)在隔离系统中,如果发生一个不可逆变化,则必定是自发的,自发变化总是朝熵增加的方向进行。熵判据自发变化的结果使系统趋于平衡状态,这时若有反应发生,必定是可逆的,熵值不变。Helmholtz自由能判据即自发变化总是朝着Helmholtz自由能减少的方向进行,直至系统达到平衡。Gibbs自由能判据即自发变化总是朝着Gibbs自由能减少的方向进行,直至系统达到平衡。系统不可能自动发生dG>0的变化。若有非膨胀功存在,则判据为在不可逆的情况下,环境所做非膨胀功大于系统Gibbs自由能的增量。§3.12 G的计算示例等温物理变化中的G化学反应中的——化学反应等温式等温物理变化中的G根据G的定义式:根据具体过程,代入就可求得G值。因为G是状态函数,只要始、终态定了,可以设计可逆过程来计算G值。等温物理变化中的G(1)等温、等压可逆相变的G因为相变过程中不作非膨胀功,等温物理变化中的G(2)等温下,系统从 改变到 ,设对理想气体:(适用于任何物质)对于化学反应设均为理想气体,在van’tHoff平衡箱中进行化学反应中的——化学反应等温式化学反应中的——化学反应等温式这公式称为van’tHoff
等温式,也称为化学反应等温式。化学反应中的——化学反应等温式是利用van’tHoff
平衡箱导出的平衡常数是化学反应进度为1mol时Gibbs自由能的变化值是反应给定的反应始终态压力的比值化学反应中的——化学反应等温式反应正向进行反应处于平衡状态反应不能正向进行反应有可能逆向进行§3.13几个热力学函数间的关系基本公式特性函数
Maxwell
关系式的应用
Gibbs
自由能与温度的关系——
Gibbs-Helmholtz方程
Gibbs
自由能与压力的关系几个函数的定义式
定义式适用于任何热力学平衡态体系,只是在特定的条件下才有明确的物理意义。(2)焓的定义式。在等压、 的条件下。(1)热力学能的定义与第一定律。在等容、Wf=0的条件下,△U=Qv(dV=0,Wf=0)。△U=Q+W几个函数的定义式(4)Gibbs
自由能定义式。在等温、等压、可逆条件下,它的降低值等于体系所作最大非膨胀功。或(3)Helmholz
自由能定义式。在等温、可逆条件下,它的降低值等于体系所作的最大功。几个热力学函数之间关系的图示式四个基本公式代入上式即得。(1)这是热力学第一与第二定律的联合公式,适用于组成恒定、不作非膨胀功的封闭系统。虽然用到了 的公式,但适用于任何可逆或不可逆过程,因为式中的物理量皆是状态函数,其变化值仅决定于始、终态。但只有在可逆过程中 才等于
, 才等于。公式(1)是四个基本公式中最基本的一个。因为四个基本公式(1)这个公式是热力学能U=U(S,V)的全微分表达式,只有两个变量,但要保持系统组成不变。
若系统内发生相变或化学变化,就要增加组成变量,所以这公式只适用于内部平衡的、只有体积功的封闭系统。四个基本公式因为所以(2)四个基本公式因为(3)所以四个基本公式(4)因为所以从基本公式导出的关系式(1)(2)(3)(4)从公式(1),(2)导出 从公式(1),(3)导出 从公式(2),(4)导出 从公式(3),(4)导出特性函数对于U,H,S,A,G等热力学函数,只要其独立变量选择适当,就可以从一个已知的热力学函数求得所有其它热力学函数,从而可以把一个热力学系统的平衡性质完全确定下来。这个已知函数就称为特性函数,所选择的独立变量就称为该特性函数的特征变量。常用的特征变量为:特性函数例如,从特性函数G及其特征变量T,p,求H,U,A,S等函数的表达式。导出:特性函数对于理想气体,等温时,将该式代入上述各热力学关系式,就可以得到理想气体各状态函数以T,p为变量的具体表达式。特性函数当特征变量保持不变,特性函数的变化值可以用作判据。因此,对于组成不变、不做非膨胀功的封闭系统,可用作判据的有:用得多用得少Maxwell关系式及其应用全微分的性质设函数z的独立变量为x,y所以 M和N也是x,y的函数z具有全微分性质利用该关系式可将实验可测偏微商来代替那些不易直接测定的偏微商。热力学函数是状态函数,数学上具有全微分性质(1)(2)(3)(4)将关系式用到四个基本公式中,就得到Maxwell关系式:(1)求U随V的变化关系Maxwell关系式的应用已知基本公式等温对V求偏微分Maxwell关系式的应用不易测定,根据Maxwell关系式所以只要知道气体的状态方程,就可得到值,即等温时热力学能随体积的变化值。Maxwell关系式的应用解:对理想气体,例1证明理想气体的热力学能只是温度的函数。所以,理想气体的热力学能只是温度的函数。(2)求H随p的变化关系已知基本公式等温对p求偏微分 不易测定,据Maxwell关系式所以 只要知道气体的状态方程,就可求得 值,即等温时焓随压力的变化值。Maxwell关系式的应用解:例2证明理想气体的焓只是温度的函数。所以,理想气体的焓只是温度的函数。对理想气体,解:
例3利用 的关系式,可以求出气体在状态变化时的和值。解:
例3利用 等关系式,可以求出气体在状态变化时的和值。知道气体的状态方程,就求出的值(3)求S随P或V的变化关系等压热膨胀系数(isobaricthermalexpansirity)定义则根据Maxwell关系式:从状态方程求得与的关系,就可求或。例如,对理想气体已知(4)求Joule-Thomson系数从气体状态方程求出值,从而得值
并可解释为何值有时为正,有时为负,有时为零。
Gibbs自由能与温度的关系——
Gibbs-Helmholtz方程
用来从一个反应温度的 (或 )求另一反应温度时的 (或)根据基本公式根据定义式在温度T时
表示 和 与温度的关系式都称为Gibbs-Helmholtz方程
Gibbs自由能与温度的关系——
Gibbs-Helmholtz方程则所以这就是Gibbs——Helmholtz方程的一种形式为了将该式写成易于积分的形式,在等式两边各除以T,重排后得这就是Gibbs——Helmholtz方程的另一种形式左边就是 对T微商的结果,即对上式进行移项积分作不定积分,得式中I为积分常数使用上式时,需要知道与T的关系后再积分代入 与T关系式,进行积分已知式中
为积分常数,可从热力学数据表求得如果知道某一温度的,就可计算积分常数I
就可以得到的值Gibbs-Helmholtz方程同理,对于Helmholtz自由能,其Gibbs-Helmholtz公式的形式为:处理方法与Gibbs自由能的一样。Gibbs自由能与压力的关系已知对于理想气体移项积分将温度为T、在标准压力下的纯物作为标准态§3.14热力学第三定律与规定熵热力学第三定律规定熵值化学反应过程的熵变计算热力学第三定律凝聚系统的和与T的关系
1902年,T.W.Richard研究了一些低温下电池反应的和与T的关系,发现温度降低时,和值有趋于相等的趋势。用公式可表示为:热力学第三定律ΔG或ΔH热力学第三定律Nernst热定理(Nernstheattheorem)
1906年,Nernst经过系统地研究了低温下凝聚系统的反应,提出了一个假定,即 这就是Nernst热定理的数学表达式,用文字可表述为:在温度趋近于0K的等温过程中,系统的熵值不变。热力学第三定律并可用数学方法证明,该假定在数学上也是成立的。当 时 这个假定的根据是:从Richard得到的和与T的关系图,可以合理地推想在T趋向于0K时,和有公共的切线,该切线与温度的坐标平行,即:热力学第三定律在1920年,Lewis和Gibson指出,Planck的假定只适用于完整晶体,即只有一种排列方式的晶体。在1912年,Planck把热定理推进了一步,他假定:在热力学温度0K时,纯凝聚物的熵值等于零,即:所以,热力学第三定律可表示为:“在0K时,任何完整晶体(只有一种排列方式)的熵等于零。”热力学第三定律热力学第三定律有多种表述方式:在温度趋近于热力学温度0K时的等温过程中,体系的熵值不变,这称为Nernst
热定理。即:“不能用有限的手续把一个物体的温度降低到0K”,即只能无限接近于0K这极限温度。绝热去磁致冷低温下,体系往往已成固体,不可能以作功的方式使体系内能减少来进一步降低温度,这时,常用绝热去磁致冷。其基本原理是:先在低温浴中加强磁场将一些顺磁性物质,如GdSO4磁化,由于有相当数量的分子将沿磁场方向定向,磁子由混乱排列变为有序排列,体系的熵值降低。然后在绝热的情况下去磁,分子又从有序变为无序。但由于过程是绝热的,没有能量由环境传给体系,于是体系的温度下降,再进行一次等温磁化和绝热去磁,体系的温度必进一步下降。这是利用电子磁矩的取向,可将温度降到1K以下。如果是利用核磁矩的取向,可将温度降到几十nK。在实验室内达到了仅仅比绝对零度高0.5nK的温度(2003,Science)
规定熵值(conventionalentropy)规定在0K时完整晶体的熵值为零,从0K到温度T进行积分,这样求得的熵值称为规定熵。若0K到T之间有相变,则积分不连续。已知若用积分法求熵值(1)用积分法求熵值以 为纵坐标,T为横坐标,求某物质在40K时的熵值。如图所示:阴影下的面积,就是所要求的该物质的规定熵。固态液态气态熔点沸点图中阴影下的面积加上两个相变熵即为所求的熵值。 如果要求某物质在沸点以上某温度T时的熵变,则积分不连续,要加上在熔点(Tf)和沸点(Tb)时的相应熵,其积分公式可表示为:由于在极低温度时缺乏的数据,故可用Debye公式来计算:式中是物质的特性温度在极低温度时,式中是晶体中粒子的简正振动频率熵变的公式为两项,第一项需借助Debye公式计算化学反应过程的熵变计算(1)在标准压力下,298.15K时,各物质的标准摩尔熵值有表可查。根据化学反应计量方程,可以计算反应进度为1mol时的熵变值。(2)在标准压力下,求反应温度T时的熵变值。298.15K时的熵变值从查表得到:化学反应过程的熵变计算(3)在298.15K时,求反应压力为p时的熵变。标准压力下的熵变值查表可得(Maxwell关系式)(4)从可逆电池的热效应或从电动势随温度的变化率求电池反应的熵变熵变的计算小结 等温过程的熵变 变温过程的熵变 化学过程的熵变 环境的熵变 用热力学关系式求熵变等温过程的熵变(1)理想气体等温变化:可逆膨胀,真空膨胀(2)等温等压可逆相变,(若是不可逆相变,应设计可逆过程)(3)理想气体(或理想溶液)的等温混合过程,并符合分体积定律,即变温过程的熵变(1)物质的量一定的等容变温过程(2)物质的量一定的等压变温过程变温过程的熵变1.先等温后等容2.先等温后等压*3.先等压后等容(3)物质的量一定从 到 的过程。这种情况一步无法计算,要分两步计算,有三种分步方法:变温过程的熵变(4)没有相变的两个恒温热源之间的热传导*(5)没有相变的两个变温物体之间的热传导,首先要求出终态温度T变温过程的熵变常见的温差接触传热类型有:计算这类传热过程熵变时应注意下面两个问题:1.体系的熵变主要来自于那几方面的贡献;2.组成体系的每部分的始、终态是什么?化学过程的熵变(1)在标准压力下,298.15K时,各物质的标准摩尔熵值有表可查。根据化学反应计量方程,可以计算反应进度为1mol时的熵变值。(2)在标准压力下,求反应温度T时的熵变值。298.15K时的熵变值从查表得到:化学过程的熵变(3)在298.15K时,求反应压力为p时的熵变。标准压力下的熵变值查表可得(maxwell)(4)从可逆电池的热效应或从电动势随温度的变化率求电池反应的熵变环境的熵变(1)任何可逆变化时环境的熵变(2)体系的热效应可能是不可逆的,但由于环境很大,对环境可看作是可逆热效应用热力学关系式求熵变基本公式导出根据吉布斯自由能的定义式,运用于任何热力学平衡态体系根据Maxwell关系式:熵变的计算小结计算要点1.体系熵变必须沿可逆过程求其热温商;2.环境熵变必须沿实际过程求其热温商,且体系热与环境热大小相同,符号相反;3.判断过程的方向必须用总熵变,绝热时可用体系熵变;4.计算体系熵变的基本公式:3.15不可逆过程热力学热力学第二定律表明,自然界的任何一个孤立体系总是朝着从有序到无序的方向进行变化,而在一个孤立体系中,从无序到有序的转化是不会自动发生的。在变化过程中,孤立体系的熵在不断增加(能量不变),到体系达平衡时,熵最大。经典热力学研究的主要对象是平衡态,它不涉及时间因素,并限制在与环境不发生物质交换的封闭系统。而在实际生活中出现更多的是非平衡态以及与周围环境有物质交换的开放系统。生物界随时间而发生的变化总是由简单到复杂、由低级到高级来进行的。3.15不可逆过程热力学例如,由病毒、单细胞到多细胞生命,进而被结构更为有序、功能更为复杂的高级生物所取代,这是一种进化。根据熵增加原理,经典热力学对此无法给予解释。还有,自然界的许多现象总是朝着更加有序的方向演变,只要外界条件合适,可以长期保持非平衡态而不趋向于平衡态。不可逆过程热力学长期以来,人们一直以为生物界、人类社会似乎遵循着与无生命的自然界完全不同的规律.但是,生物体系也属于热力学体系,它遵守热力学第一定律,也应该遵守热力学第二定律。为了解决这类问题,人们提出了非平衡态理论,即不可逆过程的热力学。
不可逆过程热力学1947年Prigogine开始了远离平衡态的非线性热力学研究。经过二十多年的努力,他提出了耗散结构理论—一种新的不可逆过程热力学,把整个自然界里的生命科学与无生命科学问题统一起来。为此,Prigogine1977年诺贝尔化学奖。由于生物体是一种典型的靠新陈代谢维持着的耗散结构,耗散结构理论在生命科学中的应用非常广泛。不可逆过程热力学的研究对象是非平衡态体系,作为一门新兴的学科,其内容已超出本课程的要求。仅就其在处理开放体系及非平衡态体系方面作简要的介绍。开放体系的熵变1、熵流和熵产生
对一封闭体系,设在两个确定的始、终态分别发生了一个可逆过程和一个不可逆过程。根据热力学第一定律有熵流和熵产生dS=diS+deS体系处于非平衡态时,其内部性质,如温度、压力、浓度等是各不相同的,由于内部各种不平衡因素引起的混乱度增大,也就是体系不可逆过程引起的功损耗(功的损耗意味着熵的增加)而产生的熵,称为熵产生diS,因它就是体系内部的不可逆过程引起的(如扩散、热传导、化学反应等),又称为内致熵变,其值可正(不可逆过程)、可为零(平衡可逆过程),但永不为负值,diS
>0。上式是热力学第二定律一般的数学表达式。熵流和熵产生deS是由于系统与环境相互作用(交换物质和能量)引起的外熵变、称之为熵流.其值可正、可负、也可为零。对于一个开放体系,除了考虑体系内部的熵变之外(熵产生)diS,还必须考虑与外界的熵交换。dS=diS+deS熵流和熵产生熵产生原理:体系内的熵产生永不为负值。不可逆可逆1)对于孤立体系deS=0
因此diS>0。孤立体系的熵在不断增加,到体系达平衡时,熵最大。熵流和熵产生2)对非平衡态的开放体系,可以利用局部平衡假设,即对非平衡态体系中某一局域部分有定义(可以达到平衡),而整个体系的熵则为各局域熵的加和。如活的人体是一个非平衡态的开放体系(此时体系与环境既有物质的交换也有能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论