浙江省(温州)2022年数学八年级第一学期期末考试模拟试题含解析_第1页
浙江省(温州)2022年数学八年级第一学期期末考试模拟试题含解析_第2页
浙江省(温州)2022年数学八年级第一学期期末考试模拟试题含解析_第3页
浙江省(温州)2022年数学八年级第一学期期末考试模拟试题含解析_第4页
浙江省(温州)2022年数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知AD是△ABC中BC边上的中线,AB=4,AC=6,则AD的取值范围是().A.2<AD<10 B.1<AD<5 C.4<AD<6 D.4≤AD≤62.如图,在等边中,,过边上一点作于点,点为延长线上一点,且,连接交于点,则的长为().A.2 B. C.3 D.3.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.4.下列计算中正确的是().A. B. C. D.5.若点与点关于原点成中心对称,则的值是()A.1 B.3 C.5 D.76.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm7.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A.80° B.60°C.40° D.30°8.已知多边形的每一个外角都是72°,则该多边形的内角和是()A.700° B.720° C.540° D.1080°9.下列图案属于轴对称图形的是()A. B. C. D.10.计算的平方根为()A. B. C.4 D.二、填空题(每小题3分,共24分)11.化简的结果为________.12.已知点P(a+3,2a+4)在x轴上,则点P的坐标为________.13.下列图形是由一连串直角三角形演化而成,其中.则第3个三角形的面积______;按照上述变化规律,第(是正整数)个三角形的面积______.14.如图,在四边形中,已知,平分,,那么__________.15.在等腰直角三角形ABC中,,在BC边上截取BD=BA,作的平分线与AD相交于点P,连接PC,若的面积为10cm2,则的面积为___________.16.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.17.因式分解:=____.18.如图,已知,,AC=AD.给出下列条件:①AB=AE;②BC=ED;③;④.其中能使的条件为__________(注:把你认为正确的答案序号都填上).三、解答题(共66分)19.(10分)如图,△ABC中,∠B=2∠C.(1)尺规作图:作AC的垂直平分线,交AC于点D,交BC于点E;(2)连接AE,求证:AB=AE20.(6分)计算:;21.(6分)一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张.22.(8分)(1)计算:(2)若,求下列代数式的值:①;②.23.(8分)“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;

D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.24.(8分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?25.(10分)如图,在等边中,点(2,0),点是原点,点是轴正半轴上的动点,以为边向左侧作等边,当时,求的长.26.(10分)计算:-+.

参考答案一、选择题(每小题3分,共30分)1、B【分析】延长AD到E,使DE=AD,证明,从而求AD的取值范围【详解】延长AD到E,使∵AD是BC边上的中线∴即故答案为【点睛】本题考察了延长线的应用、全等三角形的判定定理以及三角形的两边之和大于第三边,合理地作辅助线是解题的关键2、C【分析】过点D作DG∥BC交AC于点,根据等边三角形的性质和全等三角形的性质解答即可.【详解】解:过点D作DG∥BC交AC于点G,

∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,

∵△ABC是等边三角形,

∴AB=AC,∠B=∠ACB=∠A=60°,

∴∠A=∠ADG=∠AGD=60°,

∴△ADG是等边三角形,

∴AG=AD,DH⊥AC,∴AH=HG=AG,

∵AD=CE,

∴DG=CE,

在△DFG与△EFC中

∴△DFG≌△EFC(AAS),∴GF=FC=GC

∴HF=HG+GF=AG+GC=AC=3,故选C.【点睛】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,

∴凉亭选择△ABC三条角平分线的交点.

故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.4、D【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【详解】A、不是同类项不能合并,故A错误;

B、同底数幂的除法底数不变指数相减,故B错误;

C、同底数幂的乘法底数不变指数相加,故C错误;

D、积的乘方等于乘方的积,故D正确;

故选:D.【点睛】此题考查积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法,解题关键在于掌握积的乘方等于每一个因式分别乘方,再把所得的幂相乘.5、C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点与点关于原点对称,∴,,解得:,,则故选C.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6、A【解析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.7、C【解析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.【详解】根据折叠的性质可得:BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC,∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选C.【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是解答本题的关键.8、C【分析】由题意可知外角和是360°,除以一个外角度数即为多边形的边数,再根据多边形的内角和公式可求得该多边形的内角和.【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:5,∴该多边形的内角和为:(5﹣2)×180°=540°.故选:C.【点睛】本题考查多边形的内外角和,用到的知识点为:多边形的边数与外角的个数的关系;n边形的内角和公式为(n-2)×180°.9、C【解析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点睛】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么就是轴对称图形.10、B【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.【详解】∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2,故选B.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题(每小题3分,共24分)11、【分析】首先把分子、分母分解因式,然后约分即可.【详解】解:==【点睛】本题主要考查了分式的化简,正确进行因式分解是解题的关键.12、(1,0)【分析】直接利用x轴上点的坐标特点得出a的值,进而得出答案.【详解】解:∵该点在x轴上∴2a+4=0∴a=-2∴点P的坐标为(1,0)故答案为:(1,0).【点睛】此题考查点的坐标,正确得出a的值是解题关键.13、【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵,∴,,,,,,…,∴第(是正整数)个三角形的面积.故答案为:,.【点睛】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题.14、2【分析】根据平行线的性质和等腰三角形的判定和性质定理即可得到结论.【详解】,,平分,,,.故答案为:.【点睛】本题考查了等腰三角形的判定和性质,平行线的性质,熟练掌握等腰三角形的判定定理是解题的关键.15、5cm1【分析】根据等腰三角形底边上的三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【详解】∵BD=BA,BP是∠ABC的平分线,

∴AP=PD,

∴S△BPD=S△ABD,S△CPD=S△ACD,

∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,

∵△ABC的面积为10cm1,

∴S△BPC=×10=5(cm1).

故答案为:5cm1.【点睛】本题考查了等腰三角形底边上的三线合一的性质,三角形的面积的运用,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.16、【分析】根据•BC•AH=•AB•AC,可得AH=,根据AD•BO=BD•AH,得OB=,再根据BE=2OB=,运用勾股定理可得EC.【详解】设BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得:BC=,∵点D是BC的中点,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,∵DE=DB=CD,∴∠DBE=∠DEB,∠DEC=∠DCE,∴∠DEB+∠DEC=×180°=90°,即:∠BEC=90°,∴在Rt△BCE中,EC==.故答案为:.【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.17、【分析】根据平方差公式:因式分解即可.【详解】解:==故答案为:.【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.18、①③④【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.【详解】∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;①∵AB=AE,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(SAS),故①正确;②∵BC=ED,AC=AD,而∠CAB和∠DAE不是相等两边的夹角,∴不能判定△ABC和△AED是否全等,故②错误;③∵∠C=∠D,AC=AD,∠CAB=∠DAE,∴△ABC≌△AED(ASA),故③正确;④∵∠B=∠E,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(AAS),故④正确.故答案为:①③④.【点睛】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.三、解答题(共66分)19、(1)见解析;(2)见解析.【分析】(1)分别以A、C为圆心,大于AC长为半径画弧,两弧交于两点,过两点画直线,交BC边于点E,交AC边于点D;

(2)由已知条件,利用线段的垂直平分线的性质,得到AE=CE,所以∠EAC=∠C.于是可得∠AEB=2∠C,故∠AEB=∠B,所以AB=AE.【详解】解:(1)如图所示,DE即为所求;

(2)∵DE垂直平分AC,

∴AE=CE.

∴∠EAC=∠C.∴∠AEB=2∠C.∵∠B=2∠C.

∴∠AEB=∠B.∴AB=AE.【点睛】此题主要考查了线段垂直平分线的作法和性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.20、8x+29【分析】先乘除去括号,再加减;主要环节是根据乘法公式展开括号.【详解】解:原式==【点睛】本题考查了整式的混合运算,主要涉及了乘法公式,灵活利用完全平方公式及平方差公式进行计算是解题的关键.21、桌面3立方米,桌腿2立方米,方桌1张.【分析】本题的等量关系为:做桌面的木料+做桌腿的木料=5;桌面数量×4=桌腿数量.【详解】解:桌面用木料x立方米,桌腿用木料y立方米,则解得50x=1.答:桌面3立方米,桌腿2立方米,方桌1张.【点睛】本题考查二元一次方程组的应用.22、(1)-2;(2)①5;②13【分析】(1)先化简各项,再相加即可得出答案.(2)①根据求出;②根据求出.【详解】(1)(2)①∵,∴②∵∴【点睛】本题考查了实数的混合运算以及整式的运算,掌握实数混合运算的法则以及整式运算的方法是解题的关键.23、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;

(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;

(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,

补全条形图如下:

C类所对应扇形的圆心角的度数为360°×=54°;

(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.24、(1)该停车场去年能停中型汽车15辆,小型汽车35辆;(2);(3)今年该停车场最少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论