版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市草铺中学2021年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域为()A.[﹣3,0]B.(﹣∞,﹣3]∪[0,+∞)C.[0,3]D.(﹣∞,0]∪[3,+∞)参考答案:C【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出不等式x(x﹣3)≤0,求出解集即可.【解答】解:∵函数,∴3x﹣x2≥0,即x(x﹣3)≤0,解得0≤x≤3;∴f(x)的定义域为[0,3].故选:C.2.已知△ABC中,BC=4,AC=4,∠A=30°,则∠C等于 ()A.90°
B.60°或120°
C.30°
D.30°或90°参考答案:D略3.如图,动点P在正方体的对角线上,过点P作垂直于平面的直线,与正方体表面相交于M,N,设BP=x,MN=y,则函数的图象大致是(
)
参考答案:B略4.已知集合,,则(
)A. B. C.
D.参考答案:B5.设函数若f(m)>1,则m的取值范围是(
)A
B
C
D
参考答案:C略6.设,则的大小关系为(
)A.
B.
C.
D.
参考答案:D7.若θ是△ABC的一个内角,且sinθcosθ=﹣,则sinθ﹣cosθ的值为()A. B. C. D.参考答案:D【考点】三角函数的化简求值.【分析】先由条件判断sinθ>0,cosθ<0,得到sinθ﹣cosθ==,把已知条件代入运算,可得答案.【解答】解:∵θ是△ABC的一个内角,且sinθcosθ=﹣,∴sinθ>0,cosθ<0,∴sinθ﹣cosθ====,故选:D.8.若,则P,Q,R的大小关系是()A.Q<P<R B.P<Q<R C.Q<R<P D.P<R<Q参考答案:D【考点】对数值大小的比较.【分析】5<x<6,可得P=<1.利用几何画板可得:y=log2x,y=的图象.可知:4<x<16时,2<<log2x.即可得出.【解答】解:∵5<x<6,∵P=<1.利用几何画板可得:y=log2x,y=的图象.可知:当x=4时,=log2x=2.当x=16时,=log2x=4.当4<x<16时,2<<log2x.综上可得:P<R<Q.故选:D.9.在三棱锥S-ABC中,,二面角的大小为60°,则三棱锥S-ABC的外接球的表面积为(
)A. B.4π C.12π D.参考答案:D【分析】取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选:D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题10.函数的定义域是
A.
B.
C.
D.R参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.log2.56.25+lg0.01+﹣2=.参考答案:【考点】对数的运算性质.【分析】利用对数的运算法则即可得出.【解答】解:原式=+lg10﹣2+lne﹣3=2﹣2+﹣3=﹣.故答案为:﹣.12.已知a=(a>0),则loga=.参考答案:4【考点】指数式与对数式的互化.【分析】直接把原式变形求出a,进一步求出loga得答案.【解答】解:∵a==,∴a=.∴loga=4.故答案为:4.13.已知函数在单调增加,在单调减少,则
.参考答案:14.一个扇形的面积为1,周长为4,则它圆心角的弧度数为
参考答案:215.已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=
.参考答案:【分析】由题求得θ的范围,结合已知求得cos(θ),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ)的值.【详解】解:∵θ是第四象限角,∴,则,又sin(θ),∴cos(θ).∴cos()=sin(θ),sin()=cos(θ).则tan(θ)=﹣tan().故答案为:.16.已知,且,则x=________.参考答案:或【分析】利用正切函数的单调性及周期性,可知在区间与区间内各有一值,从而求出。【详解】因为函数的周期为,而且在内单调增,所以有两个解,一个在,一个在,由反正切函数的定义有,或。【点睛】本题主要考查正切函数的性质及反正切函数的定义的应用。17.已知幂函数的图象过点,则=________________.
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值。(2)已知f(3)=1且f(a)>f(a-1)+2,求a的取值范围。(3)证明:f()=f(x)-f(y)参考答案:(3)由知
.19.某商品在近30天内,每件的销售价格(元)与时间t(天)的函数关系是:,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,),求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?参考答案:解:设日销售额为y元,则略20.(14分)一个三棱柱的三视图及直观图如图所示,E,F,G分别是A1B,B1C1,AA1的中点,AA1⊥底面ABC.(1)求证:B1C⊥平面A1BC1;(2)求证:EF∥平面ACC1A1;(3)在BB1上是否存在一点M,使得GM+MC的长最短.若存在,求出这个最短值,并指出点M的位置;若不存在,请说明理由.参考答案:考点: 直线与平面垂直的判定;直线与平面平行的判定.专题: 空间位置关系与距离.分析: (1)利用直三棱柱的性质,只要证明B1C垂直与平面A1BC1的两条相交直线;(2)连接A1C,AC1交于点O,连接OE,利用中位线的性质得到四边形OEFG为平行四边形,再由线面平行的判定定理可得;(3)在BB1上存在一点M,使得GM+MC的长最短.通过勾股定理求得.解答: (1)证明:∵AA1⊥平面ABC,AA1∥CC1,∴CC1⊥平面ABC,∴CC1⊥AC,∵AC⊥BC,∴AC⊥平面BC,…(2分)∵AC∥A1C1,∴A1C1⊥平面BC,∴A1C1⊥B1C…(3分)又B1C⊥BC1,A1C1∩BC1=C1,∴B1C⊥平面A1BC1…(5分)(2)连接A1C,AC1交于点O,连接OE…(6分)由题意可得,O为A1C中点,因为E为A1B中点,∴OE∥并且OE=因为F为C1B1的中点中点,∴,∴OE∥C1F,OE=C1F∴四边形OEFG为平行四边形…(8分)∴FE∥OC1…(9分)∵FE?平面ACC1A1,OC1?平面ACC1A1,∴FE∥平面ACC1A1…(10分)(3)在BB1上存在一点M,使得GM+MC的长最短,此时沿CC1展开,时G,M,C在一条直线上.最短值为GC=此时BM=…(14分)点评: 本题考查了直三棱柱的性质、线面平行的判定定理以及线段最短问题,属于中档题.21.设函数f(x)=log3(9x)?log3(3x),≤x≤9.(Ⅰ)若m=log3x,求m取值范围;(Ⅱ)求f(x)的最值,并给出最值时对应的x的值.参考答案:考点: 复合函数的单调性;对数函数的单调性与特殊点.专题: 函数的性质及应用.分析: (Ⅰ)根据给出的函数的定义域,直接利用对数函数的单调性求m得取值范围;(Ⅱ)把f(x)=log3(9x)?log3(3x)利用对数式的运算性质化为含有m的二次函数,然后利用配方法求函数f(x)的最值,并由此求出最值时对应的x的值.解答: 解:(Ⅰ)∵,m=log3x为增函数,∴﹣2≤log3x≤2,即m取值范围是;(Ⅱ)由m=log3x得:f(x)=log3(9x)?log3(3x)=(2+log3x)?(1+log3x)=,又﹣2≤m≤2,∴当,即时f(x)取得最小值,当m=log3x=2,即x=9时f(x)取得最大值12.点评: 本题考查了复合函数的单调性,考查了换元法,训练了利用配方法求二次函数的最值,是中档题.22.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).参考答案:【考点】函数的最值及其几何意义.【分析】(1)根据函数的对称性即可求出g(x),即可得到f(g(x))=x,解得即可.(2)先求出函数的解析式,得到,解得m=0,n=2,(3)由x∈[﹣1,1]可得t∈[,2],结合二次函数的图象和性质,对a进行分类讨论,即可得到函数y=f2(x)﹣2af(x)+3的最小值h(a)的表达式.【解答】解:(1)∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∵f(g(x))=6﹣x2,∴=6﹣x2=x,即x2+x﹣6=0,解得x=2或x=﹣3(舍去),故x=2,(2)y=g(f(x2))==x2,∵定义域为[m,n](m≥0),值域为[2m,2n],,解得m=0,n=2,(3)令t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年金融服务采购合同创新金融产品合作协议2篇
- 导演与发行方2025年度合同3篇
- 二零二五年度餐饮泔水处理与环保设施运营管理合同6篇
- 二零二五年度高校毕业生就业见习实践基地建设合作合同3篇
- 二零二五年度航空航天设备维修承包合同样本3篇
- 二零二五年高性能混凝土委托加工合同范本3篇
- 碎石买卖合同(二零二五年度)2篇
- 二零二五年度药品质量第三方检测合同范本6篇
- 二零二五版国际贸易中货物所有权转移与国际贸易政策研究合同3篇
- 2025年度电力设施租赁合同标的转让协议3篇
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论