版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年高考——概率统计1.(20全国I文17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级ABCD频数40202020乙分厂产品等级的频数分布表等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?2.(20全国I理19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为1,2(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.3.(20全国n文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(叼%)(i=1,2,…,20),其中七和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得光x=60 , £y =1200, 2((x-X)2 -80, 2((y -y)2 -9000,ii i ii-1 i-1 i-1 i-1£(x一X)(y一y)=800.iii-1(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=£(x-附:相关系数r=£(x-x(y-y)ii£(xii=1-x)2£(y-y)2
ii=1v12=1.414..(20全国m文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):个、,一、锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2x2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次*00人次>400空气质量好空气质量不好
附:K2=n(ad-bc)2(a+b)(c+d)(a附:K2=n(ad-bc)2P(K2>k)0.0500.0100.001k3.8416.63510.828.(20新高考I19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO浓度(单位:g/m3),得下表:2J、/02PM2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO浓度不超过150”的概率;2(2)根据所给数据,完成下面的2x2列联表:SO2PM2.5 、、[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?五 n(ad一bc)2叫K2— ' )0.001”,: (a+b)(c+d)(a+cP(K2>k) 0.050)(b+d),0.010k 3.8416.63510.828.(20江苏23)(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn. "(1)求p1,q1和p2,q2;(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用n表示)..(20北京18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(I)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(III)将该校学生支持方案的概率估计值记为p,假设该校年级有500名男生和300名女0生,除一年级外其他年级学生支持方案二的概率估计值记为P,试比较P与P的大小.(结1 01论不要求证明)参考答案:1.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为a=0.4;100乙分厂加工出来的一件产品为A级品的概率的估计值为28=0.28.100(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65x40+25x20-5x20-75x201 二1100由数据知乙分厂加工出来的100件产品利润的频数分布表为
利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为100比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.70x28+30x17+0x34—70x21 =10100比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2.解:(1)甲连胜四场的概率为1-.16(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为1-;16乙连胜四场的概率为1-;16丙上场后连胜三场的概率为1.81 113所以需要进行第五场比赛的概率为1---=-.161684(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为1.8比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为1-,1,1.16 8 8因此丙最终获胜的概率为1+-1+1+1=-7.81688163.解:(1)由己知得样本平均数9=2105yi=60,从而该地区这种野生动物数量的估计值i=1为60X200=12000.(2)样本(%,y)(i=1,2,…,20)的相关系数ii
£(x£(x—x)(y一歹)80仄x.x)2您y.y)2 <80x9000 3ii=1ii=1(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.4.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为—(100x20+300x35+500x45)=350.100(3)根据所给数据,可得2x2列联表:人次*00人次>400空气质量好3337空气质量不好228根据列联表得K2=100x(33x8.22x37)2X5.820.55x45x70x30由于5.820〉3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.5・解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO浓度264不超过150的概率的估计值为何=0.64.(2)根据抽查数据,可得2x2列联表:
SO2PM2.5 、、[0,150](150,475][0,75]6416(75,115]1010100x(64x10—16x10)2(3)根据(2)的列联表得K2= X7.484.80x20x74x26由于7.484〉6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO浓度有关.2C1C1C1 16.解:⑴%=甘-cr=3,C1C1 2=2・3=1ClC33,33TOC\o"1-5"\h\zC1C1 C1C1 1 2 7p=1-3•p+2--1•q+0-(1—p—q)=p+q=-2C1C1 1C1C1 1 1 1 31912733 33C1C1 C1C1 C1C1 C1C1q=r•r•p+(-2•r+—1•r)•q+r•~^2•(1—p—q)2 C1C1 1 C1C1 C1C1 1 C1C1 1 133 33 33 331 216= q+—=-.91327(2)当n>2时,C1C1C1C1 1 2p= •h•p+才•77•q+0•(1—p—q)=-p+-q,n C1 C1 n—1 C1 C1 n—1 n—1 n—1 3 n—1 9 n—133 33C1 C1 C1C1 C1 C1 C1C1q= • •p+(t• +——1 1)•q +——3•一•(1—p—q)n C1 C1 n—1 C1C1 C1 C1 n—1 C1C1 n—1 n—133 33 33 331—q9n—14 1 21 22x①+②,得2p+qnnn—12x①+②,得2p+qnnn—19n—1 9n—1 3 3 n—1 n—1 3从而2p从而2pn+q—1=1(2p
n3+q—1),n—1 n—1所以2所以2pn+qn=1+3(3)n.1=1+(3)n,31 3由②,有q“-531 3由②,有q“-5=-9(qn.1—5),又q31 =51511 3所以q= (一)n-1+t,ngN*.n159 5DD由③,有P=[口+(3n-q]=;!;(-!)n+[(!)n+7,neN*•n2 3n 109 23 5/ 3/1、 1/1、,1 〜故1-P-q=~(-T)n-T(T)n+二,neN*.nn10 9 23 5X的概率分布nXn012P1-p-qn nqnPn贝°E(X)=0x(1-p-q)+1xq+2xp=1+(』)n,ne
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院综合安防和管理解决方案
- 2022年公务员多省联考《申论》真题(辽宁B卷)及答案解析
- 制药企业安全生产培训
- 文明上网班会课件
- 2024年新高一物理初升高衔接《牛顿运动定律的应用》含答案解析
- 教育课件的制作
- 磁性罗盘产业规划专项研究报告
- 日程表产品入市调查研究报告
- 煤球机产业规划专项研究报告
- 石油制清洁剂产业深度调研及未来发展现状趋势
- 2025届高考语文复习:小说情节概括+课件
- 国开2024年秋《机电控制工程基础》形考任务2答案
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 2024年“农业经理人”职业技能大赛考试题库500题(含答案)
- 西方近现代建筑史智慧树知到期末考试答案章节答案2024年天津大学
- 2024年河北承德热力集团招聘笔试参考题库含答案解析
- 软件测试项目课件04黑盒测试
- DB31-T 540-2022 重点单位消防安全管理要求
- 2016中科院分区查询
- 略谈戏剧教育中的“人学观”
- (完整)二年级乘除法竖式计算(2)
评论
0/150
提交评论