2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)_第1页
2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)_第2页
2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)_第3页
2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)_第4页
2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖南省岳阳市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________一、单选题(20题)1.

2.

3.若函数f(x)=5x,则f'(x)=

A.5x-1

B.x5x-1

C.5xln5

D.5x

4.

5.

6.曲线y=ex与其过原点的切线及y轴所围面积为

A.

B.

C.

D.

7.A.A.2xy3

B.2xy3-1

C.2xy3-siny

D.2xy3-siny-1

8.

9.设y=x2-e2,则y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

10.设f(x)=sin2x,则f(0)=()

A.-2B.-1C.0D.2

11.

12.

13.设f(x)为连续函数,则等于()A.A.

B.

C.

D.

14.

15.对于微分方程y"-2y'+y=xex,利用待定系数法求其特解y*时,下列特解设法正确的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

16.

17.设f(x)在点x0的某邻域内有定义,且,则f'(x0)等于().A.-1B.-1/2C.1/2D.1

18.

19.设k>0,则级数为().A.A.条件收敛B.绝对收敛C.发散D.收敛性与k有关

20.

二、填空题(20题)21.

22.

23.

24.

25.

26.微分方程y'=ex的通解是________。

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.微分方程xy'=1的通解是_________。

38.

39.

40.

三、计算题(20题)41.当x一0时f(x)与sin2x是等价无穷小量,则

42.将f(x)=e-2X展开为x的幂级数.

43.求微分方程y"-4y'+4y=e-2x的通解.

44.

45.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为

S(x).

(1)写出S(x)的表达式;

(2)求S(x)的最大值.

46.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.

47.

48.证明:

49.

50.求微分方程的通解.

51.

52.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?

53.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.

54.求曲线在点(1,3)处的切线方程.

55.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求该薄板的质量m.

56.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.

57.

58.

59.求函数f(x)=x3-3x+1的单调区间和极值.

60.

四、解答题(10题)61.

62.(本题满分8分)计算

63.

64.

65.在曲线y=x2(x≥0)上某点A(a,a2)处作切线,使该切线与曲线及x轴所围成的图形的面积为1/12.试求:(1)切点A的坐标((a,a2).(2)过切点A的切线方程.

66.计算

67.

68.计算

69.

70.

五、高等数学(0题)71.f(x)在[a,b]上可导是f(x)在[a,b]上可积的()。

A.充要条件B.充分条件C.必要条件D.无关条件

六、解答题(0题)72.

又可导.

参考答案

1.A

2.D

3.C本题考查了导数的基本公式的知识点。f'(x)=(5x)'=5xln5.

4.A

5.C解析:

6.A

7.A

8.B解析:

9.D

10.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故选D。

11.B

12.D

13.D本题考查的知识点为定积分的性质;牛-莱公式.

可知应选D.

14.A

15.D特征方程为r2-2r+1=0,特征根为r=1(二重根),f(x)=xex,α=1为特征根,因此原方程特解y*=x2(Ax+B)ex,因此选D。

16.B解析:

17.B由导数的定义可知

可知,故应选B。

18.D

19.A本题考查的知识点为级数的绝对收敛与条件收敛.

由于为莱布尼茨级数,为条件收敛.而为莱布尼茨级数乘以数-k,可知应选A.

20.D

21.连续但不可导连续但不可导

22.y

23.

24.

25.

26.v=ex+C

27.

28.1

29.

30.1/6

31.

32.

本题考查的知识点为二重积分的计算.

33.2本题考查了定积分的知识点。

34.

本题考查的知识点为函数商的求导运算.

考生只需熟记导数运算的法则

35.(sinx+cosx)exdx(sinx+cosx)exdx解析:

36.F(sinx)+C

37.y=lnx+C

38.ln|1-cosx|+Cln|1-cosx|+C解析:

39.

40.

41.由等价无穷小量的定义可知

42.

43.解:原方程对应的齐次方程为y"-4y'+4y=0,

44.

45.

46.

47.由一阶线性微分方程通解公式有

48.

49.

50.

51.

52.需求规律为Q=100ep-2.25p

∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,

∴当P=10时,价格上涨1%需求量减少2.5%

53.

列表:

说明

54.曲线方程为,点(1,3)在曲线上.

因此所求曲线方程为或写为2x+y-5=0.

如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点

(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为

55.由二重积分物理意义知

56.

57.

58.

59.函数的定义域为

注意

60.

61.

62.本题考查的知识点为计算反常积分.

计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.

63.

64.

65.由于y=x2,则y'=2x,曲线y=x2上过点A(a,a2)的切线方程为y-a2=2a(x-a),即y=2ax-a2,曲线y=x2,其过点A(a,a2)的切线及x轴围成的平面图形的面积

由题设S=1/12,可得a=1,因此A点的坐标为(1,1).过A点的切线方程为y-1=2(x-1)或y=2x-1.解析:本题考查的知识点为定积分的几何意义和曲线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论