




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖北省黄冈市成考专升本高等数学一自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.设函数f(x)与g(x)均在(α,b)可导,且满足f'(x)<g'(x),则f(x)与g(x)的关系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能确定大小
2.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
3.
4.在空间直角坐标系中,方程x2-4(y-1)2=0表示()。A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面
5.设函数f(x)在[a,b]上连续,且f(a)·f(b)<0,则必定存在一点ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
6.交变应力的变化特点可用循环特征r来表示,其公式为()。
A.
B.
C.
D.
7.
8.下列关系式中正确的有()。A.
B.
C.
D.
9.A.A.
B.
C.
D.
10.A.A.0B.1C.2D.不存在
11.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
12.A.A.
B.
C.
D.
13.设y=exsinx,则y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
14.平面x+y一3z+1=0与平面2x+y+z=0相互关系是()。
A.斜交B.垂直C.平行D.重合
15.
16.A.A.>0B.<0C.=0D.不存在
17.
设f(x)=1+x,则f(x)等于()。A.1
B.
C.
D.
18.用待定系数法求微分方程y"-y=xex的一个特解时,特解的形式是(式中α、b是常数)。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
19.
A.2B.1C.1/2D.0
20.设y=f(x)为可导函数,则当△x→0时,△y-dy为△x的A.A.高阶无穷小B.等价无穷小C.同阶但不等价无穷小D.低阶无穷小
21.
22.
23.
24.
25.A.
B.
C.
D.
26.
27.微分方程y"-y'=0的通解为()。A.
B.
C.
D.
28.A.0B.1C.2D.-1
29.
30.
31.
32.()。A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件
33.
34.在初始发展阶段,国际化经营的主要方式是()
A.直接投资B.进出口贸易C.间接投资D.跨国投资
35.
36.A.A.
B.
C.
D.
37.
38.设函数f(x)在区间(0,1)内可导,f'(x)>0,则在(0,1)内f(x)().A.单调增加B.单调减少C.为常量D.既非单调,也非常量39.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
40.微分方程y′-y=0的通解为().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
41.设f(x)在点x0的某邻域内有定义,且,则f'(x0)等于().A.-1B.-1/2C.1/2D.1
42.如图所示,在半径为R的铁环上套一小环M,杆AB穿过小环M并匀速绕A点转动,已知转角φ=ωt(其中ω为一常数,φ的单位为rad,t的单位为s),开始时AB杆处于水平位置,则当小环M运动到图示位置时(以MO为坐标原点,小环Md运动方程为正方向建立自然坐标轴),下面说法不正确的一项是()。
A.小环M的运动方程为s=2Rωt
B.小环M的速度为
C.小环M的切向加速度为0
D.小环M的法向加速度为2Rω2
43.
44.
45.46.A.A.
B.
C.
D.
47.图示为研磨细砂石所用球磨机的简化示意图,圆筒绕0轴匀速转动时,带动筒内的许多钢球一起运动,当钢球转动到一定角度α=50。40时,它和筒壁脱离沿抛物线下落,借以打击矿石,圆筒的内径d=32m。则获得最大打击时圆筒的转速为()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min48.设函数z=y3x,则等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
49.设函数y=f(x)二阶可导,且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,则当△x>0时,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
50.
二、填空题(20题)51.设y=-lnx/x,则dy=_________。
52.
53.
54.
55.
56.
57.
58.曲线y=x3—6x的拐点坐标为________.59.
60.过坐标原点且与平面3x-7y+5z-12=0平行的平面方程为_________.
61.
62.
63.64.65.直线的方向向量为________。66.67.若当x→0时,2x2与为等价无穷小,则a=______.
68.
69.
70.三、计算题(20题)71.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
72.
73.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.74.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.75.求函数f(x)=x3-3x+1的单调区间和极值.76.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
77.
78.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.79.求曲线在点(1,3)处的切线方程.80.将f(x)=e-2X展开为x的幂级数.
81.求微分方程y"-4y'+4y=e-2x的通解.
82.83.求微分方程的通解.84.证明:85.
86.
87.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
88.89.当x一0时f(x)与sin2x是等价无穷小量,则90.
四、解答题(10题)91.
92.
93.
94.求微分方程y"+9y=0的通解。
95.
96.(本题满分8分)
97.
98.
99.
100.五、高等数学(0题)101.已知∫f(ex)dx=e2x,则f(x)=________。
六、解答题(0题)102.
参考答案
1.D解析:由f'(x)<g'(x)知,在(α,b)内,g(x)的变化率大于f(x)的变化率,由于没有g(α)与f(α)的已知条件,无法判明f(x)与g(x)的关系。
2.C
3.D
4.A
5.D
6.A
7.D
8.B本题考查的知识点为定积分的性质.
由于x,x2都为连续函数,因此与都存在。又由于0<x<1时,x>x2,因此
可知应选B。
9.B本题考查的知识点为可导性的定义.当f(x)在x=1处可导时,由导数定义可得
10.C本题考查的知识点为左极限、右极限与极限的关系.
11.C
12.A本题考查的知识点为偏导数的计算.
可知应选A.
13.C由莱布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
14.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
15.C
16.C被积函数sin5x为奇函数,积分区间[-1,1]为对称区间。由定积分的对称性质知选C。
17.C本题考查的知识点为不定积分的性质。可知应选C。
18.Ay"-y=0的特征方程是r2-1=0,特征根为r1=1,r2=-1
y"-y=xex中自由项f(x)=xex,α=1是特征单根,应设y*=x(ax+b)ex=(αx2+bx)ex。
所以选A。
19.D本题考查的知识点为重要极限公式与无穷小量的性质.
20.A由微分的定义可知△y=dy+o(△x),因此当△x→0时△y-dy=o(△x)为△x的高阶无穷小,因此选A。
21.C
22.D
23.D
24.C
25.B
26.C
27.B本题考查的知识点为二阶常系数齐次微分方程的求解。微分方程为y"-y'=0特征方程为r2-r=0特征根为r1=1,r2=0方程的通解为y=C1ex+c2可知应选B。
28.C
29.C
30.C
31.B
32.C
33.B
34.B解析:在初始投资阶段,企业从事国际化经营活动的主要特点是活动方式主要以进出口贸易为主。
35.B
36.B本题考查的知识点为级数收敛性的定义.
37.A
38.A由于f(x)在(0,1)内有f'(x)>0,可知f(x)在(0,1)内单调增加,故应选A.
39.C本题考查了二元函数的高阶偏导数的知识点。
40.C所给方程为可分离变量方程.
41.B由导数的定义可知
可知,故应选B。
42.D
43.C
44.C
45.C
46.D本题考查的知识点为偏导数的计算.
47.C
48.D本题考查的知识点为偏导数的计算.
z=y3x
是关于y的幂函数,因此
故应选D.
49.B
50.A解析:
51.
52.
53.
54.
55.0
56.-ln2
57.y=1y=1解析:58.(0,0).
本题考查的知识点为求曲线的拐点.
依求曲线拐点的-般步骤,只需
59.
60.3x-7y+5z=0本题考查了平面方程的知识点。已知所求平面与3x-7y+5z-12=0平行,则其法向量为(3,-7,5),故所求方程为3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
61.3x2+4y
62.
63.3本题考查了幂级数的收敛半径的知识点.
所以收敛半径R=3.
64.65.直线l的方向向量为
66.67.6;本题考查的知识点为无穷小阶的比较.
当于当x→0时,2x2与为等价无穷小,因此
可知a=6.
68.
解析:
69.(-33)(-3,3)解析:
70.
71.
72.
73.
74.由二重积分物理意义知
75.函数的定义域为
注意
76.
77.
78.
列表:
说明
79.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
80.
81.解:原方程对应的齐次方程为y"-4y'+4y=0,
82.
83.
84.
85.
则
86.
87.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
88.
89.由等价无穷小量的定义可知90.由一阶线性微分方程通解公式有
91.
92.
93.
94.y"+9y=0的特征方程为r2+9=0特征值为r12=±3i故通解为y=C1cos3x+C2sin3x。y"+9y=0的特征方程为r2+9=0,特征值为r1,2=±3i,故通解为y=C1cos3x+C2sin3x。
95.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子竞技赛事平台考核试卷
- 高校辅导员招聘考试中的有效沟通与交际策略研究试题及答案
- 行政管理师职场发展动态解读试题及答案
- 纸容器包装设计的绿色创新理念考核试卷
- 纸张分切技术考核试卷
- 2025年企业财务报告中的关键信息提取研究试题及答案
- 2023年中国铁建投资集团有限公司公开招聘新兴产业管理人员若干名笔试参考题库附带答案详解
- 2024年项目管理考试备考试题及答案
- 项目管理中团队文化的炫融试题及答案
- 2024年项目管理复习全景试题及答案
- 2024年中国酸奶袋市场调查研究报告
- 诺如病毒课件教学课件
- 职业技术学校城市轨道交通运营服务专业人才培养方案
- 1.1认识三角形公开课获奖课件省赛课一等奖课件
- 低分子肝素课件
- 搬迁服务项目 投标方案(技术标)
- “双新”背景下高中信息技术单元整合教学实践
- 北京市《配电室安全管理规范》(DB11T 527-2021)地方标准
- 特应性皮炎治疗药物应用管理专家共识2024版解读
- 支气管肺炎护理查房
- 飞机管路基础知识课件讲解
评论
0/150
提交评论