版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河南省开封市普通高校对口单招高等数学一自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
A.1
B.2
C.x2+y2
D.TL
2.
3.方程x2+y2-z=0表示的二次曲面是()。A.椭球面B.圆锥面C.旋转抛物面D.柱面
4.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置关系为().A.A.垂直B.斜交C.平行D.重合
5.
6.已知
则
=()。
A.
B.
C.
D.
7.曲线y=x2+5x+4在点(-1,0)处切线的斜率为()A.A.2B.-2C.3D.-3
8.平面x+y一3z+1=0与平面2x+y+z=0相互关系是()。
A.斜交B.垂直C.平行D.重合
9.设f(x)在点x0的某邻域内有定义,且,则f'(x0)等于().A.-1B.-1/2C.1/2D.1
10.设y=e-3x,则dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
11.A.A.0B.1C.2D.任意值
12.
13.
14.
15.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4
16.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
17.极限等于().A.A.e1/2B.eC.e2D.1
18.设z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
19.A.A.充分非必要条件B.必要非充分条件C.充分必要条件D.无关条件
20.
二、填空题(20题)21.
22.
23.
24.设y=3x,则y"=_________。
25.级数的收敛区间为______.
26.
27.
28.
29.设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f'(0)=______.
30.
31.
32.
33.微分方程y'+9y=0的通解为______.
34.
35.微分方程xy'=1的通解是_________。
36.
37.
38.
39.
40.设y=2x+sin2,则y'=______.
三、计算题(20题)41.
42.求函数f(x)=x3-3x+1的单调区间和极值.
43.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
44.
45.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
46.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
47.
48.求曲线在点(1,3)处的切线方程.
49.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
50.当x一0时f(x)与sin2x是等价无穷小量,则
51.
52.求微分方程的通解.
53.将f(x)=e-2X展开为x的幂级数.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.
56.
57.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
58.证明:
59.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
60.
四、解答题(10题)61.设函数y=ex+arctanx+π2,求dy.
62.
63.给定曲线y=x3与直线y=px-q(其中p>0),求p与q为何关系时,直线y=px-q是y=x3的切线.
64.
65.设y=y(x)由方程X2+2y3+2xy+3y-x=1确定,求y'.
66.
67.
68.求函数f(x,y)=e2x(x+y2+2y)的极值.
69.
70.
五、高等数学(0题)71.求
的极值。
六、解答题(0题)72.求方程y''2y'+5y=ex的通解.
参考答案
1.A
2.C
3.C本题考查的知识点为二次曲面的方程。
将x2+y2-z=0与二次曲面标准方程对照,可知其为旋转抛面,故应选C。
4.A本题考查的知识点为两平面的关系.
两平面的关系可由两平面的法向量n1,n2间的关系确定.
5.A
6.A
7.C点(-1,0)在曲线y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由导数的几何意义可知,曲线y=x2+5x+4在点(-1,0)处切线的斜率为3,所以选C.
8.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
9.B由导数的定义可知
可知,故应选B。
10.C
11.B
12.C
13.C
14.B
15.C
16.D
17.C本题考查的知识点为重要极限公式.
由于,可知应选C.
18.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
19.D
20.C
21.
本题考查的知识点为二元函数的偏导数.22.本题考查的知识点为不定积分的换元积分法。
23.22解析:
24.3e3x
25.(-∞,+∞)本题考查的知识点为求幂级数的收敛区间.
26.
27.2yex+x
28.
29.0本题考查的知识点为极值的必要条件.
由于y=f(x)在点x=0可导,且x=0为f(x)的极值点,由极值的必要条件可知有f'(0)=0.
30.
31.5
32.
解析:
33.y=Ce-9x本题考查的知识点为求解可分离变量微分方程.
分离变量
两端分别积分
lny=-9x+C1,y=Ce-9x.
34.00解析:
35.y=lnx+C
36.本题考查的知识点为二重积分的直角坐标与极坐标转化问题。
37.
38.1
39.0
40.2xln2本题考查的知识点为初等函数的求导运算.
本题需利用导数的四则运算法则求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本题中常见的错误有
(sin2)'=cos2.
这是由于误将sin2认作sinx,事实上sin2为一个常数,而常数的导数为0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
请考生注意,不论以什么函数形式出现,只要是常数,它的导数必定为0.
41.
42.函数的定义域为
注意
43.由二重积分物理意义知
44.
则
45.
46.
列表:
说明
47.
48.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
49.
50.由等价无穷小量的定义可知
51.
52.
53.
54.解:原方程对应的齐次方程为y"-4y'+4y=0,
55.由一阶线性微分方程通解公式有
56.
57.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
58.
59.
60.
61.解
62.
63.
64.
65.解法1将所给方程两端关于x求导,可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,则本题考查的知识点为隐函数求导法.
y=y(x)由方程F(x,Y)=0确定,求y'通常有两种方法:
一是将F(x,y)=0两端关于x求导,认定y为中间变量,得到含有y'的方程,从中解出y'.
二是利用隐函数求导公式其中F'x,F'y分别为F(x,y)=0中F(x,y)对第一个位置变元的偏导数与对第二个位置变元的偏导数.
对于一些特殊情形,可以从F(x,y)=0中较易地解出y=y(x)时,也可以先求出y=y(x),再直接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供货方英语合同范例
- 瓷砖店购买合同范例
- 员工礼物批发合同范例
- oem啤酒合同范例
- 使用合同范例坏处
- 2025年临汾货运资格证题库下载安装
- 日本商品采购合同范例
- 汽车托管合同范例
- 江苏装修设计合同范例
- 冷库质保合同范例
- 变、配电站防火制度范文(2篇)
- 九年级上册人教版数学期末综合知识模拟试卷(含答案)
- 重大版小英小学六年级上期期末测试
- 微积分知到智慧树章节测试课后答案2024年秋铜陵学院
- 金融科技UI设计
- 《头脑风暴》课件
- 安全生产知识考试题库(有答案)-安全考试题库
- 人教版(2024)八年级上册物理第六章 质量与密度 单元测试卷(含答案解析)
- 会计助理个人年终工作总结
- 电解加工课件教学课件
- 酒店前台消防安全培训
评论
0/150
提交评论