下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市商业学校2021-2022学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则的值为().A.1 B.-1 C.0 D.2参考答案:A令,,令,,而.选.2.如果点位于第二象限,那么角所在象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D略3.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角为()A.900
B.450
C.600
D.300参考答案:D略4.符合下列条件的三角形有且只有一个的是(
)A.a=1,b=2,c=3
B.a=1,b=
,∠A=30°C.a=1,b=2,∠A=100°
D.b=c=1,∠B=45°参考答案:D5.下列幂函数中,定义域为R且为偶函数的个数为(
)(1)
(2)
(3)
(4)A.1个
B.2个
C.3个
D.4个参考答案:A略6.已知||=3,||=1,与的夹角为,那么|﹣4|等于() A.2 B. C. D.13参考答案:C【考点】平面向量数量积的运算. 【专题】转化思想;向量法;平面向量及应用. 【分析】由向量的数量积的定义可得=||||cos<,>=3×1×=,再由向量的模的平方即为向量的平方,化简整理计算即可得到所求值. 【解答】解:||=3,||=1,与的夹角为, 可得=||||cos<,>=3×1×=, 即有|﹣4|= ==. 故选:C. 【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 7.方程的解集为M,方程的解集为N,且那么(
)A.21
B.8
C.6
D.7参考答案:A略8.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则A中的元素(﹣1,2)在集合B中的像()A.(﹣1,﹣3) B.(1,3) C.(3,1) D.(﹣3,1)参考答案:D【考点】映射.【专题】计算题;函数的性质及应用.【分析】根据已知中映射f:A→B的对应法则,f:(x,y)→(x﹣y,x+y),将A中元素(﹣1,2)代入对应法则,即可得到答案.【解答】解:由映射的对应法则f:(x,y)→(x﹣y,x+y),故A中元素(﹣1,2)在B中对应的元素为(﹣1﹣2,﹣1+2)即(﹣3,1)故选D【点评】本题考查的知识点是映射的概念,属基础题型,熟练掌握映射的定义,是解答本题的关键.9.要得到的图像,只需将的图像
(
)A.向左平移个单位
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位参考答案:A10.如果全集U=R,A={x|2<x≤4},B={3,4},则等于
A.(2,3)U(3,4)B.(2,4)C.(2,3)U(3,4]D.(2,4]参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.函数y=2sinπx(x∈R)的部分图象如图所示,设O为坐标原点,P是图象的最高点,B是图象与x轴的交点,则tan∠OPB的值为.参考答案:【考点】正弦函数的图象.【分析】过P作PQ垂直于x轴,根据正弦函数的图象与性质,得出点P、B和Q的坐标,计算|PQ|,|OQ|,|BQ|的长,利用锐角三角函数定义表示出tan∠OPQ和tan∠BPQ,计算tan∠OPB的值即可.【解答】解:过P作PQ⊥x轴,如图所示:∵函数y=2sinπx,且P是图象的最高点,B是图象与x轴的交点,∴P(,2),B(2,0),即|PQ|=2,|OQ|=,|OB|=2,∴|QB|=|OB|﹣|OQ|=,在Rt△OPQ中,tan∠OPQ==,在Rt△PQB中,tan∠BPQ==,∴tan∠OPB=tan(∠OPQ+∠BPQ)==.故答案为:.【点评】本题考查了两角和与差的正切函数公式,锐角三角函数定义以及正弦函数的图象与性质,作出辅助线PQ,找P、B的坐标是解题的关键.12.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________。参考答案:数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.13.若,则的值是
.参考答案:14.函数y=3tan(2x+)的最小正周期为.参考答案:
【考点】三角函数的周期性及其求法.【分析】根据正切函数的周期公式进行求解即可.【解答】解:由正切函数的周期公式得T=,故答案为:【点评】本题主要考查三角函数的周期的计算,根据条件结合正切函数的周期公式是解决本题的关键.15.点(2,3,4)关于平面xOz的对称点为
.参考答案:(2,-3,4)16.设,则的最小值为__________参考答案:217.若方程有两个实数根,则实数的取值范围是
参考答案:或.略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为元,①求关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.参考答案:解:(1)由图像可知,,解得,,所以.
(2)①由(1),
,
②由①可知,,其图像开口向下,对称轴为,所以当时,.即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件19.已知数集,数集Q={0,a+b,b2},且P=Q,求a,b的值.参考答案:【考点】集合的相等.【专题】计算题;方程思想;定义法;集合.【分析】由集合相等的概念,利用集合中元素的互异性和无序性能求出a,b的值.【解答】解:∵数集,数集Q={0,a+b,b2},且P=Q,∴,∴a=0,b=±1,当a=0,b=1时,Q={0,1,1},不成立,当a=0,b=﹣1时,P={1,0,﹣1},Q={0,﹣1,1},成立,∴a=0,b=﹣1.【点评】本题考查集合中实数值的求法,是基础题,解题时要认真审题,注意集合相等的概念的合理运用.20.(10分)(2015秋?合肥校级月考)已知关于x的方程:x2+2(a﹣1)x+2a+6=0.(Ⅰ)若该方程有两个不等实数根,求实数a的取值范围;(Ⅱ)若该方程有两个不等实数根,且这两个根都大于1,求实数a的取值范围;(Ⅲ)设函数f(x)=x2+2(a﹣1)x+2a+6,x∈[﹣1,1],记此函数的最大值为M(a),最小值为N(a),求M(a),N(a)的解析式.参考答案:【考点】二次函数的性质.
【专题】函数的性质及应用.【分析】(Ⅰ)方程有两个不等实数根,从而判别式△>0,这样便可得出a<﹣1,或a>5,即得出了实数a的取值范围;(Ⅱ)该方程有两个不等实数根,且这两个根都大于1,从而判别式△>0,由(Ⅰ)知a<﹣1,或a>5,并且小根满足大于1,即,解出该不等式,再根据a还需满足a<﹣1,或a>5即可得出实数a的取值范围;(Ⅲ)先求f(x)的对称轴,x=1﹣a,讨论1﹣a和区间[﹣1,1]的关系:分1﹣a≤﹣1,﹣1<1﹣a≤0,0<1﹣a<1,和1﹣a≥1四种情况,在每种情况里,根据二次函数的单调性或取得顶点情况及端点值的比较,便可得出f(x)在[﹣1,1]上的最大值,和最小值,最后便可写出M(a),N(a).【解答】解:(Ⅰ)该方程有两个不等实数根;∴△=4(a﹣1)2﹣4(2a+6)>0;解得a<﹣1,或a>5;(Ⅱ)该方程有两个不等实数根,根据(Ⅰ)便知,a<﹣1,或a>5;且这两个根都大于1;∴;即;∴;∴;解得;∴;∴实数a的取值范围为(,﹣1);(Ⅲ)f(x)的对称轴为x=1﹣a;∴①1﹣a≤﹣1,即a≥2时,f(x)在[﹣1,1]上单调递增;∴M(a)=f(1)=4a+5,N(a)=f(﹣1)=9;②﹣1<1﹣a≤0,即1≤a<2时,M(a)=f(1)=4a+5,N(a)=f(1﹣a)=﹣a2+4a+5;③0<1﹣a<1,即0<a<1时,M(a)=f(﹣1)=9,N(a)=f(1﹣a)=﹣a2+4a+5;④1﹣a≥1,即a≤0时,f(x)在[﹣1,1]上单调递减;∴M(a)=f(﹣1)=9,N(a)=f(1)=4a+5;∴综上得,,.【点评】考查一元二次方程有两个不等实数根时判别式△的取值情况,一元二次方程的求根公式,二次函数的对称轴,以及根据二次函数的单调性或取得顶点情况,及对端点值的比较,从而得出函数最值的方法.21.设全集,集合,.(1)当时,求;(2)若,求实数的取值范围;(2)若,求实数的取值范围.参考答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学教师法制培训课件
- 培训机构英语老师述职
- 14.2 热机的效率(7大题型)(含答案解析)
- 山西省晋中市榆次区山西现代双语学校南校2024-2025学年高三上学期11月月考数学试题(含答案)
- 河北省唐山市滦州市2024-2025学年八年级上学期期中道德与法治试题(含答案)
- 2024-2025学年江苏省苏州市苏州高新区第一初级中学校八年级上数学月考试卷(含答案)
- T-XZZL 0034-2024 高粱面(红面)鱼鱼传统美食制作规程
- 河北省邢台市部分学校2024-2025学年高三上学期开学考试试题 含解析
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)4.3 任务2 创建区域
- 河北省百师联盟2024-2025学年高三上学期10月联考地理试卷 含解析
- 煤矿应急叫应、回应、响应机制
- JGJ107-2016钢筋机械连接技术规程
- 山东省行道树栽植及养护技术规程
- 2022电化学储能电站安全规程
- 社会救助落实容错纠错机制亮点经验做法
- 关于大数据的课件
- 打赌协议书格式范文
- 旋挖钻孔灌注桩施工技术规程
- 货物受损赔偿协议书范本
- 2024山西省晋城市沁水县恒达城市开发投资限公司招聘专业技术人员7人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 医疗机构门诊收费收据
评论
0/150
提交评论