




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市恒阳中学2022高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,是两条不重合的直线,、、是三个两两不重合的平面,则下列命题成立的是()A.若∥,∥,则∥
B.若∥,∥,则∥
C.若∥,∩=,∩=,则∥
D.若,,∥,则∥参考答案:C略2.||=1,||=,?=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于()A. B.3 C. D.参考答案:B【考点】向量的共线定理;向量的模.【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,避免出错.【解答】解:法一:如图所示:=+,设=x,则=.=∴==3.法二:如图所示,建立直角坐标系.则=(1,0),=(0,),∴=m+n=(m,n),∴tan30°==,∴=3.故选B3.已知锐角α满足sinα+cosα=,则tan()=(
) A.﹣ B. C. D.参考答案:B考点:两角和与差的正切函数;两角和与差的余弦函数.专题:三角函数的求值.分析:由两角和与差的三角函数公式可得sin(),再由同角三角函数的基本关系可得cos(),相除可得答案.解答: 解:∵锐角α满足sinα+cosα=,α∴sinα+cosα=,∴sin()=<,∴0<,∴cos()==,∴tan()==.故选:B.点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.4.为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.5.根据下列算法语句,当输入a=-4时,输出的b的值为
A.-8
B.-5
C.5
D.8参考答案:A略6.若是所在平面内的一点,且向量满足条件,,则的形状是(
)参考答案:D7.若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z) B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z) D.[kπ﹣,kπ+](k∈Z)参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性函数g(x)的单调递增区间.【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.8.已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为(
)A.
B.
C.1
D.参考答案:A因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一对角线垂直一边,此对角线的长为,所以该四棱锥的体积为。9.设复数则复数
在复平面内对应点位于()A.第一象限
B.第二象限
C.第三象限
D.第四象限
参考答案:C10.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于.A.13
B.35
C.49
D.63参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.三人互相传球,每人每次只能传一下,由甲开始传,则经过两次传球后,球被传回给甲的概率是_____________。参考答案:
12.已知函数,若,则实数的取值范围是
.参考答案:略13.已知△ABC中,内角A,B,C的对边a,b,c,若a2=b2+c2﹣bc,bc=4,△ABC的面积为__________.参考答案:考点:余弦定理;正弦定理.专题:解三角形.分析:利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出A的度数,再由bc的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:∵△ABC中,a2=b2+c2﹣bc,即b2+c2﹣a2=bc,∴cosA==,∴A=60°,∵bc=4,∴S△ABC=bcsinA=,故答案为:点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键14.已知函数和的定义域均为R,是偶函数,是奇函数,且的图像过点,,则
.参考答案:-615.直线ax﹣y+3=0与圆(x﹣2)2+(y﹣a)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是.参考答案:a≤﹣【考点】直线与圆相交的性质.【分析】由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,利用|MN|≥2,建立不等式,即可得到a的范围.【解答】解:由圆的方程得:圆心(2,a),半径r=2,∵圆心到直线ax﹣y+3=0的距离d=,|MN|≥2,∴,解得:a≤﹣,故答案为:a≤﹣.【点评】此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,熟练掌握公式及定理是解本题的关键.16.若,且当时,恒有,则以,b为坐标点
所形成的平面区域的面积等于
.参考答案:答案:117.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(?UB)=
.参考答案:{1,5}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】进行集合的补集、交集运算即可.【解答】解:?UB={1,4,5,6};∴A∩(?UB)={1,5}.故答案为:{1,5}.【点评】考查列举法表示集合,全集的概念,以及补集、交集的运算.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.[选修4-2:矩阵与变换]若二阶矩阵M满足,.求曲线在矩阵M所对应的变换作用下得到的曲线的方程.参考答案:解:记矩阵,则行列式,故,所以,即矩阵.设曲线上任意一点在矩阵对应的变换作用下得到点.所以,所以,所以,又点在曲线上,代入整理得,由点的任意性可知,所求曲线的方程为.
19.数列{an}满足a1+2a2+22a3+…+2n-1an=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足Tn=n·bn+1(为常数,且<1).
(1)求数列{an}的通项公式及的值;(2)设,求数列的前n项的和;参考答案:(1)∵
a1+2a2+22a3+…+2n-1an=, ①∴
a1+2a2+22a3+…+2n-2an-1=(n≥2), ②①-②得2n-1an=-=(n≥2),
化简得an=(n≥2).显然n=1时也满足上式,故an=(n∈N*).
由于成等差,且b1,设公差为d,则解得或又<1,∴,
bn=2n
∴
,an=(n∈N*)
(2)∵Cn=n·2n
于是pn=1·2+2·22+3·23+…+n·2n, ③2pn=1·22+2·23+3·24+…+n·2n+1, ④③-④得-pn=2+22+23+…+2n-n·2n+1,
∴
pn=(1-n)2n+1-2
略20.如图,已知椭圆C的中心在原点,焦点F1,F2在x轴上,焦距与短轴长均为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l经过椭圆C的右焦点F2,与椭圆C交于A,B两点,且|AB|是|F1A|与|F1B|的等差中项,求直线l的方程.参考答案:考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆C的方程为,(其中a>b>0),根据题意,代入计算即可;(Ⅱ)分直线l的斜率是否存在两种情况考虑:当直线l的斜率存在时,设直线l的方程并代入椭圆C,结合韦达定理,利用已知条件可求得斜率k=±1;当直线l⊥x轴时,不合题意.解答: 解:(Ⅰ)设椭圆C的方程为,(其中a>b>0)由题意得,,所以,又a2=b2+c2,从而a2=4,b2=2,所以椭圆C的方程为;(Ⅱ)当直线l的斜率存在时,设直线l的方程为,代入椭圆C的方程,整理得,设A(x1,y1),B(x2,y2),由韦达定理,得,,由于|AB|是|FA1|与|F1B|的等差中项,则|F1A|+|BF1|=2|AB|,而|F1A|+|AB|+|BF1|=4a=8,所以.=,解得k=±1;当直线l⊥x轴时,,代入得y=±1,|AB|=2,不合题意.所以,直线l的方程为.点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意积累解题方法,联立方程组后利用韦达定理是解题的关键.21.已知函数f(x)=x2﹣ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x﹣1)与x轴的交点N处的切线为l2,并且l1与l2平行.(1)求f(2)的值;(2)已知实数t∈R,求函数y=f[xg(x)+t],x∈[1,e]的最小值;(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,并且使得不等式|F(α)﹣F(β)|<|F(x1)﹣F(x2)|恒成立,求实数m的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题.【分析】(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a值,从而得到f(2)的值;(2)令u=xlnx,再研究二次函数u2+(2t﹣1)u+t2﹣t图象是对称轴u=,开口向上的抛物线,结合其性质求出最值;(3)先由题意得到F(x)=g(x)+g′(x)=lnx+,再利用导数工具研究所以F(x)在区间(1,+∞)上单调递增,得到当x≥1时,F(x)≥F(1)>0,下面对m进行分类讨论:①当m∈(0,1)时,②当m≤0时,③当m≥1时,结合不等式的性质即可求出a的取值范围.【解答】解:(1)y=f(x)图象与x轴异于原点的交点M(a,0),f′(x)=2x﹣ay=g(x﹣1)=ln(x﹣1)图象与x轴的交点N(2,0),g′(x﹣1)=由题意可得k=k,即a=1,…∴f(x)=x2﹣x,f(2)=22﹣2=2
…(2)y=f[xg(x)+t]=[xlnx+t]2﹣(xlnx+t)=(xlnx)2+(2t﹣1)(xlnx)+t2﹣t,…令u=xlnx,在x∈[1,e]时,u′=lnx+1>0,∴u=xlnx在[1,e]单调递增,0≤u≤e
…u2+(2t﹣1)u+t2﹣t图象的对称轴u=,抛物线开口向上①当u=≤0即t时,y最小=t2﹣t
…②当u=≥e即t时,y最小=e2+(2t﹣1)e+t2﹣t
…③当0<<e即时,y最小=y=﹣
…(3)F(x)=g(x)+g′(x)=lnx+,F′(x)=所以F(x)在区间(1,+∞)上单调递增
…∴当x≥1时,F(x)≥F(1)>0①当m∈(0,1)时,有α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α=mx1+(1﹣m)x2<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理β∈(x1,x2),…∴由f(x)的单调性知
0<F(x1)<F(α)、f(β)<f(x2)
从而有|F(α)﹣F(β)|<|F(x1)﹣F(x2)|,符合题设.…②当m≤0时,,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,由f(x)的单调性知,F(β)≤F(x1)<f(x2)≤F(α)∴|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符…③当m≥1时,同理可得α≤x1,β≥x2,得|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符.…(13分)∴综合①、②、③得m∈(0,1)…(14分)说明:各题如有其它解法,按照相应的步骤给分.【点评】本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、利用导数研究函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年制药工程专业考试试卷及答案
- 2025年现代语言学考试题及答案
- 2025年信息与计算机科学考试试卷及答案
- 2025年戏剧文学与创作课程考试试题及答案
- 2025年社会心理学研究方法测试卷及答案
- 2025年武术与健身课程考试试题及答案
- 2025年物流管理考试卷及答案
- 2025年海洋科学基础课程考试试题及答案
- 2025年财务报表分析考题及答案
- 合同协议书范本模板图片
- 雨水泵站专项施工方案
- 抗生素分级管理规范
- T-PAYS 002-2024 磐安药膳制作技术规程
- 牛场安全培训
- 脑电图及临床应用
- 新《城镇燃气设施运行、维护和抢修安全技术规程》考试题库(含答案)
- 第八单元常见的酸、碱、盐基础练习题-+2024-2025学年九年级化学科粤版(2024)下册
- 2025年广西物流职业技术学院单招职业技能测试题库带答案
- 万科物业绿化养护管理手册
- 卡车充换电站建议书可行性研究报告备案
- 第十二周《遇见劳动之美点亮成长底色》主题班会
评论
0/150
提交评论