四川省德阳市东汽中学2022年高一数学理联考试题含解析_第1页
四川省德阳市东汽中学2022年高一数学理联考试题含解析_第2页
四川省德阳市东汽中学2022年高一数学理联考试题含解析_第3页
四川省德阳市东汽中学2022年高一数学理联考试题含解析_第4页
四川省德阳市东汽中学2022年高一数学理联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省德阳市东汽中学2022年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程(x-2)+(y+1)=1表示的曲线关于点T(-3,2)的对称曲线方程是:

A、(x+8)+(y-5)=1

B、(x-7)+(y+4)=2C、(x+3)+(y-2)=1

D、(x+4)+(y+3)=2参考答案:A2.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是(

)参考答案:A略3.已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9参考答案:C【考点】其他不等式的解法.

【专题】计算题;函数的性质及应用.【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.4.定义在R上的奇函数f(x)满足:对任意的x∈R,都有f(x)=f(4﹣x),且x∈(0,2)时,f(x)=x+1,则f(5)等于(

)A.﹣2 B.2 C.0 D.1参考答案:A【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】利用函数的奇偶性以及已知条件化简求解即可.【解答】解:定义在R上的奇函数f(x)满足:对任意的x∈R,都有f(x)=f(4﹣x),且x∈(0,2)时,f(x)=x+1,则f(5)=f(4﹣5)=f(﹣1)=﹣f(1)=﹣(1+1)=﹣2.故选:A.【点评】本题考查抽象函数的应用,函数值的求法,考查计算能力.5.(5分)在如图所示的边长为6的正方形ABCD中,点E是DC的中点,且=,那么?等于() A. ﹣18 B. 20 C. 12 D. ﹣15参考答案:D考点: 平面向量数量积的运算.专题: 计算题;平面向量及应用.分析: 运用中点向量表示形式和向量加法的三角形法则可得=﹣,再由向量的数量积的性质,向量的平方即为模的平方,及向量垂直的条件:数量积为0,计算即可得到结论.解答: 解:在△CEF中,=+,由于点E为DC的中点,则=,由=,则=+=+=﹣,即有=(﹣)?(+)=﹣+=(﹣)×62+0=﹣15.故选D.点评: 本题考查平面向量的数量积的性质,考查向量垂直的条件和向量的平方即为模的平方,考查中点向量表示形式,考查运算能力,属于中档题.6.(5分)非零向量和满足2||=||,⊥(+),则与的夹角为() A. B. C. D. 参考答案:D考点: 平面向量数量积的运算.专题: 计算题;平面向量及应用.分析: 运用向量垂直的条件:数量积为0,以及向量的数量积的定义和向量的平方即为模的平方,结合夹角的定义,即可得到所求.解答: 由2||=||,⊥(+),则?(+)=0,即为+=0,即为||2+||?||?cos<,>=0,即||2+2||2cos<,>=0,即cos<,>=﹣,由0≤<,>≤π,则与的夹角为.故选D.点评: 本题考查向量数量积的定义和性质,主要考查向量垂直的条件:数量积为0,考查运算能力,属于基础题.7.如图,在四形边ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列结论正确的是()A.AD⊥平面BCD B.AB⊥平面BCDC.平面BCD⊥平面ABC D.平面ADC⊥平面ABC参考答案:D【考点】平面与平面垂直的判定.【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.8.在△ABC中,如果a=4,b=5,A=30°,则此三角形有()A.一解 B.两解 C.无解 D.无穷多解参考答案:B【考点】HP:正弦定理.【分析】首先利用正弦定理得出角C的度数,然后根据条件和三角形的内角和得出结论.【解答】解:根据正弦定理得,∴sinB==,∵B∈(0,180°)∴B∈(30°,150°)有两个B的值,满足题意.故选B.【点评】本题考查了正弦定理,解题过程中尤其要注意三角形的内角和的运用,属于基础题.9.设函数,则f(10)值为(

A.1

B.-1

C.10

D.参考答案:A10.若函数与的定义域均为,则(

).A.与均为偶函数B.为奇函数,为偶函数C.与均为奇函数D.为偶函数,为奇函数参考答案:D试题分析:因为,所以为偶函数.因为,所以为奇函数,故选.二、填空题:本大题共7小题,每小题4分,共28分11.若,且,则的最小值是______.参考答案:8【分析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.12.若集合为{1,a,}={0,a2,a+b}时,则a﹣b=

.参考答案:﹣1【考点】集合的相等.【分析】利用集合相等的概念分类讨论求出a和b的值,则答案可求.【解答】解:由题意,b=0,a2=1∴a=﹣1(a=1舍去),b=0,∴a﹣b=﹣1,故答案为﹣1.13.命题“全等三角形一定相似”的否命题是,命题的否定是.参考答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似14.已知数列,an=2an+1,a1=1,则=______.参考答案:-9915.若对任意正数x,y都有则实数a的最大值是________.参考答案:略16.数列{

}的前项和为,已知,则n值是*****.参考答案:917.已知为等比数列,是它的前项和.若,且与的等差中项为,则

.参考答案:31三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=0,将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点.(1)求证:OM∥平面ABD;(2)求证:平面ABC⊥平面MDO.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)由中位线定理得OM∥AB,再证OM∥平面ABD;(2)利用勾股定理证明OD⊥OM,由菱形的性质证明OD⊥AC;从而证明OD⊥平面ABC,平面ABC⊥平面MDO.【解答】证明:(1)由题意知,O为AC的中点,∵M为BC的中点,∴OM∥AB;又∵OM?平面ABD,BC?平面ABD,∴OM∥平面ABD;(2)由题意知,OM=OD=3,,∴OM2+OD2=DM2,∴∠DOM=90°,即OD⊥OM;又∵四边形ABCD是菱形,∴OD⊥AC;∵OM∩AC=O,OM,AC?平面ABC,∴OD⊥平面ABC;∵OD?平面MDO,∴平面ABC⊥平面MDO.19.为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天的PM2.5日平均浓度(单位:微克/立方米)是监测数据,得到甲地PM2.5日平均浓度的频率分布直方图和乙地PM2.5日平均浓度的频数分布表.甲地20天PM2.5日平均浓度频率分布直方图乙地20天PM2.5日平均浓度频数分布表PM2.5日平均浓度(单位:微克/立方米)[0,20](20,40](40,60](60,80](80,100]频率(天数)23465(1)根据乙地20天PM2.5日平均浓度的频数分布表作出相应的频率分布直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度;(不要求计算出具体值,给出结论即可)(2)求甲地20天PM2.5日平均浓度的中位数;(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:满意度等级非常满意满意不满意PM2.5日平均浓度(单位:微克/立方米)不超过20大于20不超过60超过60记事件C:“甲地市民对空气质量的满意度等级为不满意”。根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件的概率.参考答案:(1)乙地20天PM2.5日平均浓度的频率分布直方图如图所示:由此可知,甲地PM2.5日平均浓度的平均值低于乙地PM2.5日平均浓度的平均值;而且甲地的数据比较集中,乙地的数据比较分散.(2)∵甲地PM2.5日平均浓度在之间的频率为在之间的频率为;∴,∴中位数一定在区间之间,设为,则,解得∴甲地PM2.5日平均浓度的中位数为微克/立方米.(2)因为当PM2.5日平均浓度超过60微克/立方米时,市民对空气质量不满意,所以又由对立事件计算公式,得.20.已知,其中α,β∈(0,π).(1)求cosβ的值;(2)求α﹣β的值.参考答案:【考点】GP:两角和与差的余弦函数.【分析】(1)由已知及同角三角函数基本关系式可求sinα,cosα,cos(α+β)的值,由β=(α+β)﹣α,利用两角差的余弦函数公式即可计算得解.(2)由已知及同角三角函数基本关系式可求<β<π,且sinβ,利用两角差的余弦函数公式可求cos(α﹣β)的值,根据范围﹣π<α﹣β<0,即可求得α﹣β的值.【解答】(本题满分为12分)解:(1)由tanα=,且0<α<π得:0<α<,…且sinα=,cosα=.…又0<β<π,所以0<α+β<.…又由sin(α+β)=<0得:π<α+β<,且cos(α+β)=.…故cosβ=cos=cos(α+β)cosα+sin(α+β)sinα=??=.…(2)由cosβ=<0且0<β<π得,<β<π,且sinβ=.所以cos(α﹣β)=cosαcosβ+sinαsinβ=?()+?=.…又由0<α<,<β<π,得﹣π<α﹣β<0.…所以α﹣β=.…21.如图,正四棱锥S-ABCD的底面是边长为正方形,为底面对角线交点,侧棱长是底面边长的倍,P为侧棱SD上的点.

(Ⅰ)求证:AC⊥SD;

(Ⅱ)若SD⊥平面PAC,为中点,求证:∥平面PAC;(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,

使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由。参考答案:证明:(Ⅰ)连接SO

1分

2分

3分又

4分22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案:【考点】HX:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论