版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年内蒙古自治区呼和浩特市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.政策指导矩阵是根据()将经营单值进行分类的。
A.业务增长率和相对竞争地位
B.业务增长率和行业市场前景
C.经营单位的竞争能力与相对竞争地位
D.经营单位的竞争能力与市场前景吸引力
2.
3.鉴别的方法主要有查证法、比较法、佐证法、逻辑法。其中()是指通过寻找物证、人证来验证信息的可靠程度的方法。
A.查证法B.比较法C.佐证法D.逻辑法
4.
5.设函数f(x)满足f'(sin2x=cos2x,且f(0)=0,则f(x)=()A.
B.
C.
D.
6.
7.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
8.=()。A.
B.
C.
D.
9.
10.设y=3+sinx,则y=()A.-cosxB.cosxC.1-cosxD.1+cosx11.若f(x)<0,(a<z≤b)且f(b)<0,则在(a,b)内()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符号不定12.A.6YB.6XYC.3XD.3X^2
13.
14.
15.A.绝对收敛B.条件收敛C.发散D.收敛性与k有关
16.
17.
18.
A.
B.
C.
D.
19.级数(a为大于0的常数)().A.A.绝对收敛B.条件收敛C.发散D.收敛性与a有关
20.
二、填空题(20题)21.
22.
23.
24.设y=lnx,则y'=_________。
25.函数f(x)=xe-x的极大值点x=__________。
26.
27.28.
29.ylnxdx+xlnydy=0的通解是______.
30.31.
32.
33.34.函数f(x)=在[1,2]上符合拉格朗日中值定理的ξ=________。35.
36.
37.
38.
39.
40.
三、计算题(20题)41.42.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
43.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.证明:47.
48.求曲线在点(1,3)处的切线方程.49.50.求微分方程的通解.51.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
52.
53.
54.当x一0时f(x)与sin2x是等价无穷小量,则55.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.56.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.57.将f(x)=e-2X展开为x的幂级数.58.59.求函数f(x)=x3-3x+1的单调区间和极值.60.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.四、解答题(10题)61.
62.(本题满分8分)
63.
64.设y=xsinx,求y.
65.
66.
67.
68.69.
70.
五、高等数学(0题)71.函数f(x)=xn(a≠0)的弹性函数为g(x)=_________.
六、解答题(0题)72.求微分方程xy'-y=x2的通解.
参考答案
1.D解析:政策指导矩阵根据对市场前景吸引力和经营单位的相对竞争能力的划分,可把企业的经营单位分成九大类。
2.A
3.C解析:佐证法是指通过寻找物证、人证来验证信息的可靠程度的方法。
4.C
5.D
6.A
7.A设所求平面方程为.由于点(1,0,0),(0,1,0),(0,0,1)都在平面上,将它们的坐标分别代入所设平面方程,可得方程组
故选A.
8.D
9.A解析:
10.B
11.D∵f"(x)<0,(a<x≤b).∴(x)单调减少(a<x≤b)当f(b)<0时,f(x)可能大于0也可能小于0。
12.D
13.A解析:
14.B
15.A本题考查的知识点为无穷级数的收敛性。
16.C
17.C
18.D本题考查的知识点为导数运算.
因此选D.
19.A本题考查的知识点为级数绝对收敛与条件收敛的概念.
注意为p=2的p级数,因此为收敛级数,由比较判别法可知收敛,故绝对收敛,应选A.
20.B解析:
21.本题考查的知识点为定积分计算.
可以利用变量替换,令u=2x,则du=2dx,当x=0时,a=0;当x=1时,u=2.因此
或利用凑微分法
本题中考生常在最后由于粗心而出现错误.如
这里中丢掉第二项.
22.23.1
24.1/x
25.1
26.2
27.
28.解析:
29.(lnx)2+(lny)2=C
30.
31.
32.133.本题考查的知识点为二重积分的直角坐标与极坐标转化问题。
34.由拉格朗日中值定理有=f"(ξ),解得ξ2=2,ξ=其中。
35.
36.1-m
37.y=xe+Cy=xe+C解析:
38.0
39.
40.5/4
41.
42.
43.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
44.
则
45.解:原方程对应的齐次方程为y"-4y'+4y=0,
46.
47.由一阶线性微分方程通解公式有
48.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
49.
50.
51.
52.
53.54.由等价无穷小量的定义可知
55.
列表:
说明
56.
57.
58.
59.函数的定义域为
注意
60.由二重积分物理意义知
61.
62.【解析】
63.本题考查的知识点为两个:定积分表示-个确定的数值;计算定积分.
这是解题的关键!为了能求出A,可考虑将左端也转化为A的表达式,为此将上式两端在[0,1]上取定积分,可得
得出A的方程,可解出A,从而求得f(x).
本题是考生感到困难的题目,普遍感到无从下手,这是因为不会利用“定积分表示-个数值”的性质.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学技术课件教学课件
- 2024年度设备供应与安装合同
- 2024年度国际搬家集装箱租赁合同
- 2024年城市轨道交通系统集成与维护合同
- 2024光通信技术研发与生产合同
- 2024年度区块链技术应用研发合同
- 2024年度废旧物资回收利用合同
- 2024年度三人合伙知识产权协议
- 2024年床上用品批量订购合同
- 2024年度智能客服系统技术服务合同
- 垃圾自动分拣机构plc控制毕业论文
- 2023新乡生态环境局事业单位考试真题
- 有限空间辨识与作业安全管理台账(模板)
- 设备维修岗位危险源辨识风险评价及控制表
- Java语言程序设计PPT全套完整教学课件
- 小学英语-Mum bug's bag教学设计学情分析教材分析课后反思
- 天然气输送管道首站门站简介演示文稿
- 复盘养猪分析:探寻背后的成功秘诀
- 艺术设计本科专业人才培养方案
- qdslrdashboard应用软件使用说明
- 海康2023综合安防工程师认证试题答案HCA
评论
0/150
提交评论