




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年吉林省长春市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.
3.
4.微分方程y'+y=0的通解为()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
5.点M(4,-3,5)到Ox轴的距离d=()A.A.
B.
C.
D.
6.设y=3-x,则y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
7.
8.
9.设f(x)=x3+x,则等于()。A.0
B.8
C.
D.
10.
11.设y=x2-e2,则y=
A.2x-2e
B.2x-e2
C.2x-e
D.2x
12.若f(x)有连续导数,下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
13.
14.
15.
16.函数f(x)=lnz在区间[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
17.
18.A.A.1/3B.3/4C.4/3D.319.下列关系正确的是()。A.
B.
C.
D.
20.已知函数f(x)的定义域是[一1,1],则f(x一1)的定义域为()。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]二、填空题(20题)21.微分方程y"+y=0的通解为______.22.
23.
24.设f(x)=xex,则f'(x)__________。
25.26.
27.
28.
29.设y=f(x)可导,点xo=2为f(x)的极小值点,且f(2)=3.则曲线y=f(x)在点(2,3)处的切线方程为__________.
30.
31.设y=cosx,则y'=______
32.
33.
34.
35.
36.
37.
38.
39.设y=ex,则dy=_________。
40.
三、计算题(20题)41.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
42.
43.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.44.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.45.46.求微分方程的通解.47.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.48.49.证明:50.当x一0时f(x)与sin2x是等价无穷小量,则51.
52.
53.求曲线在点(1,3)处的切线方程.54.求函数f(x)=x3-3x+1的单调区间和极值.55.将f(x)=e-2X展开为x的幂级数.56.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.57.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
60.
四、解答题(10题)61.
62.63.将展开为x的幂级数.
64.
65.设
66.
67.求∫sinxdx.
68.
69.计算,其中区域D满足x2+y2≤1,x≥0,y≥0.
70.(本题满分8分)
五、高等数学(0题)71.
;D:x2+y2≤4。
六、解答题(0题)72.
参考答案
1.A
2.A
3.B
4.D可以将方程认作可分离变量方程;也可以将方程认作一阶线性微分方程;还可以仿二阶线性常系数齐次微分方程,并作为特例求解。解法1将方程认作可分离变量方程。分离变量
两端分别积分
或y=Ce-x解法2将方程认作一阶线性微分方程.由通解公式可得解法3认作二阶常系数线性齐次微分方程特例求解:特征方程为r+1=0,特征根为r=-1,方程通解为y=Ce-x。
5.B
6.Ay=3-x,则y'=3-x。ln3*(-x)'=-3-xln3。因此选A。
7.D解析:
8.D
9.A本题考查的知识点为定积分的对称性质。由于所给定积分的积分区间为对称区间,被积函数f(x)=x3+x为连续的奇函数。由定积分的对称性质可知
可知应选A。
10.C
11.D
12.A解析:若设F'(x)=f(x),由不定积分定义知,∫f(x)dx=F(x)+C。从而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正确。D中应为∫df(x)=f(x)+C。
13.D
14.B
15.C解析:
16.D由拉格朗日定理
17.A
18.B
19.C本题考查的知识点为不定积分的性质。
20.B∵一1≤x一1≤1∴0≤x≤2。21.y=C1cosx+C2sinx本题考查的知识点为二阶线性常系数齐次微分方程的求解.
特征方程为r2+1=0,特征根为r=±i,因此所给微分方程的通解为y=C1cosx+C2sinx.
22.
23.11解析:
24.(1+x)ex
25.
26.本题考查的知识点为两个:参数方程形式的函数求导和可变上限积分求导.
27.11解析:
28.y=-e-x+C
29.
30.1/21/2解析:
31.-sinx
32.-sinx33.1.
本题考查的知识点为函数连续性的概念.
34.1/(1-x)235.e.
本题考查的知识点为极限的运算.
36.
37.
38.6x26x2
解析:
39.exdx
40.y-2=3(x-1)(或写为y=3x-1)y-2=3(x-1)(或写为y=3x-1)解析:
41.
42.
43.
44.由二重积分物理意义知
45.
46.
47.
列表:
说明
48.
49.
50.由等价无穷小量的定义可知
51.
则
52.由一阶线性微分方程通解公式有
53.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
54.函数的定义域为
注意
55.
56.
57.
58.解:原方程对应的齐次方程为y"-4y'+4y=0,
59.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
60.
61.
62.
63.
;本题考查的知识点为将初等函数展开为x的幂级数.
如果题目中没有限定展开方法,一律要利用间接展开法.这要求考生记住几个标准展开式:,ex,sinx,cosx,ln(1+x)对于x的幂级数展开式.
64.
65.
解析:本题考查的知识点为偏导数运算.
66.
67.设u=x,v'=sinx,则u'=1,v=-cosx,
68.69.积分区域D如图2-1所示.
解法1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 闲置码垛机转让合同范本
- 网签三方协议如何签合同
- 游戏合作合同协议书范本
- 来料加工合同协议书模板
- 消防维保解除合同协议书
- 移门订货协议书合同范本
- 煤炭应急保供协议书模板
- 矿山水库出租合同协议书
- 湛江钢结构施工合同范本
- 自动售货机拍卖合同范本
- 医疗机构消防安全管理
- 食堂食品安全应急处置方案
- 退出中华人民共和国国籍申请表
- 西方经济学(第二版)完整整套课件(马工程)
- 检验科安全管理制度汇总
- (完整word版)中医学题库
- 英语音标拼读方法讲解
- MT 113-1995煤矿井下用聚合物制品阻燃抗静电性通用试验方法和判定规则
- GB/T 16841-2008能量为300 keV~25 MeV电子束辐射加工装置剂量学导则
- GB/T 11264-2012热轧轻轨
- 眼镜镜架知识汇总课件
评论
0/150
提交评论