白色IT商务企划:数据库工程师工作分析SQLQueryO_第1页
白色IT商务企划:数据库工程师工作分析SQLQueryO_第2页
白色IT商务企划:数据库工程师工作分析SQLQueryO_第3页
白色IT商务企划:数据库工程师工作分析SQLQueryO_第4页
白色IT商务企划:数据库工程师工作分析SQLQueryO_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DavidJ.DeWittMicrosoftJimGraySystemsLabMadison,Wisconsindewitt@©2010MicrosoftCorporation.

Allrightsreserved.

Thispresentationisforinformationalpurposesonly.

Microsoftmakesnowarranties,expressorimpliedinthispresentation.SQLQueryOptimization:WhyIsItSoHardToGetRight?2IamrunningoutofthingstotalkaboutStillnomotorcycletorideacrossthestageMywifedecidedtoshowup&seewhatallthefusswasabout!(Sheisprobablytheonlyonenottweetingbackthere)AThirdKeynote?GeneratingallthisPowerPointtakesmedaysanddays(unlikemyboss,Idonothavepeopletodomyslidedecks)Day3Day2Day1The“ImpressIndex”AThirdKeynote?1GottoshowoffthePDWApplianceCool!Myboss’sboss(TedKummert)2GottotellyouaboutSQL11Awesome!Myboss(QuentinClark)3YouAreHereMe(DavidDeWitt)PossiblyIMPRESSYOU?HowcanIHowAboutaQuiztoStart!4Whopaintedthispicture?Mondrian?Picasso?Ingres?ActuallyitwastheSQLServerqueryoptimizer!!PlanspaceforTPC-Hquery8astheparametervaluesforAcct-BalandExtendedPricearevariedEachcolorrepresentsadifferentqueryplanYikes!P1P2P3P4SQLServerWhoIsThisGuyAgain?DeWittSpent32yearsasacomputerscienceprofessorattheUniversityofWisconsinJoinedMicrosoftinMarch2008RunstheJimGraySystemsLabinMadison,WILabiscloselyaffiliatedwiththeDBgroupatUniversityofWisconsin3facultyand8graduatestudentsworkingonprojectsBuiltanalyticsandsemijoincomponentsofPDWV1.CurrentlyworkingonanumberoffeaturesforPDWV2MToday…IamgoingtotalkaboutSQLqueryoptimizationYouvotedforthistopiconthePASSwebsiteDon’tblamemeifyoudidn’tvoteandwantedtohearaboutmap-reduceandno-sqldatabasesystemsinsteadMyhopeisthatyouwillleaveunderstandingwhyalldatabasesystemssometimesproducereallybadplansStartingwiththefundamentalprincipalsQueryOptimizationMap-ReduceAnonymousQuote “Queryoptimizationisnotrocketscience.Whenyouflunkoutofqueryoptimization,wemakeyougobuildrockets.”7TheRoleoftheQueryOptimizer

(100,000ftview)QueryOptimizerSQLStatementAwesomeQueryPlanMagicHappensWhat’stheMagic?Selecto_year,

sum(casewhennation='BRAZIL'thenvolumeelse0end)/sum(volume)from(selectYEAR(O_ORDERDATE)aso_year,

L_EXTENDEDPRICE*(1-L_DISCOUNT)asvolume,

n2.N_NAMEasnationfromPART,SUPPLIER,LINEITEM,ORDERS,CUSTOMER,NATIONn1,

NATIONn2,REGIONwhereP_PARTKEY=L_PARTKEYandS_SUPPKEY=L_SUPPKEYandL_ORDERKEY=O_ORDERKEYandO_CUSTKEY=C_CUSTKEYandC_NATIONKEY=n1.N_NATIONKEYandn1.N_REGIONKEY=R_REGIONKEY

andR_NAME='AMERICA‘andS_NATIONKEY=n2.N_NATIONKEY

andO_ORDERDATEbetween'1995-01-01'and'1996-12-31'andP_TYPE='ECONOMYANODIZEDSTEEL'andS_ACCTBAL<=constant-1andL_EXTENDEDPRICE<=constant-2)asall_nationsgroupbyo_year

orderbyo_yearConsiderQuery8oftheTPC-Hbenchmark:Plan1Plan2Plan3Plan4Plan522millionplans…Thereabout22million

alternativewaysofexecutingthisquery!AverybighaystacktobesearchingthroughTheQOmustselectaplanthatrunsinsecondsorminutes,notdaysorweeks!Shouldnottakehoursordaystopickaplan!SomeHistoricalBackgroundCost-basedqueryoptimizationwasinventedbyPatSelingeraspartoftheIBMSystemRprojectinthelate1970s(SystemRbecameDB2)RemainsthehardestpartofbuildingaDBMS30+yearslaterProgressishinderedbyfearofregressionsFartoofrequentlytheQOpicksaninefficientplanSituationfurthercomplicatedbyadvancesinhardwareandtherestoftheDBMSsoftwareHardwareis1000XbiggerandfasterDBsoftwareis10XfasterQueriesoverhugeamountsofdataarepossibleIFtheQOpickstherightplan10SystemRHardwareSoftwareQueries1000X10XHuge!DatabaseSystemMorePrecisely:

TheRoleoftheQueryOptimizer11TransformSQLqueriesintoanefficientexecutionplanQueryExecutionEngineQueryOptimizerParserSQLQueryLogicaloperatortreePhysicaloperatortreeLogicaloperators:whattheydoe.g.,union,selection,project,join,groupingPhysicaloperators:howtheydoite.g.,nestedloopjoin,sort-mergejoin,hashjoin,indexjoinAFirstExample12QueryExecutionEngineQueryOptimizerParserSELECT

Average(Rating)FROMReviews

WHEREMID=932ReviewsDateCIDMIDRating…………LogicaloperatortreeAvg(Rating)Select

MID=932ReviewsQueryPlan#1Avg_agg

[Cnt,Sum]ScanReviewsFilter

MID=932Avg_agg

[Cnt,Sum]IndexLookup

MID=932MIDIndexReviewsQueryPlan#2orQueryPlan#1PlanstartsbyscanningtheentireReviewstable#ofdiskI/Oswillbeequaltothe#ofpagesintheReviewstableI/Oswillbesequential.EachI/Owillrequireabout0.1milliseconds(0.0001seconds)Filterpredicate“MID=932”isappliedtoallrowsOnlyrowsthatsatisfythepredicatearepassedontotheaveragecomputation13Avg_agg

[Cnt,Sum]ScanReviewsFilter

MID=932QueryPlan#2MIDindexisusedtoretrieveonlythoserowswhoseMIDfield(attribute)isequalto932Sinceindexisnot“clustered”,aboutonediskI/OwillbeperformedforeachrowEachdiskI/Owillrequirearandomseekandwilltakeabout3milliseconds(ms)Retrievedrowswillbepassedtotheaveragecomputation14Avg_agg

[Cnt,Sum]IndexLookup

MID=932MIDIndexReviewsWhichPlanWillbeFaster?Queryoptimizermustpickbetweenthetwoplansbyestimatingthecost

ofeachToestimatethecostofaplan,theQOmust:EstimatetheselectivityofthepredicateMID=932CalculatethecostofbothplansintermsofCPUtimeandI/OtimeTheQOusesstatistics

abouteachtabletomaketheseestimatesThe“best”plandependsonhowmanyreviewsthereareformoviewithMID=93215QueryPlan#1Avg_agg

[Cnt,Sum]ScanReviewsFilter

MID=932Avg_agg

[Cnt,Sum]IndexLookup

MID=932MIDIndexReviewsQueryPlan#2Vs.HowmanyreviewsforthemoviewithMID=932willtherebe?BestQueryPlanor???ASlightlyMoreComplexQueryConsiderthequery:Optimizermightfirstenumeratethreephysicalplans:16Filter

Rating>9SequentialScanReviewsFilter

7/1<Date>7/31RatingIndexFilter7/1<Date<7/31IndexLookupRating>9ReviewsFilterRating>9

IndexLookup7/1<Date>7/31

ReviewsDateIndexSF=.01SF=.01SF=.10SF=.10Cost=11secondsCost=100secondsCost=25secondsThen,estimateselectivityfactorsThen,calculatetotalcostFinally,picktheplanwiththelowestcostSELECT*FROMReviewsWHERE7/1<date<7/31AND

rating>9EnumeratelogicallyequivalentplansbyapplyingequivalencerulesForeachlogicallyequivalentplan,enumerateallalternativephysicalqueryplansEstimatethecostofeachofthealternativephysicalqueryplansRuntheplanwithlowestestimatedoverallcostQueryOptimization:

TheMainSteps✓2134EquivalenceRules18Selectandjoinoperatorscommute

witheachotherSelectSelectCustomersSelectSelectCustomersJoinCustomersReviewsJoinReviewsCustomersJoinCustomersReviewsJoinMoviesJoinCustomersJoinReviewsMoviesJoinoperatorsareassociativeEquivalenceRules(cont.)19Project

[CID,Name]CustomersProject

[Name]ProjectoperatorscascadeProject

[Name]CustomersSelectoperatordistributesoverjoinsSelectJoinCustomersReviewsSelectJoinCustomersReviewsExampleofEquivalentLogicalPlansSELECTM.Title,M.DirectorFROMMoviesM,ReviewsR,CustomersC

WHEREC.City=“N.Y.”ANDR.Rating>7ANDM.MID=R.MIDANDC.CID=R.CIDOnepossiblelogicalplan:20JoinSelectC.City=“N.Y”SelectR.Rating>7JoinC.CID=R.CIDR.MID=M.MIDCustomersReviewsProjectM.Title,M.DirectorMoviesMIDTitleDirectorEarnings1

2

CIDNameAddressCity5

11

DateCIDMIDRating7/311287/3524…Findtitlesanddirectornamesofmovieswitharating>7fromcustomersresidinginNYCCustomersReviewsMoviesFiveLogically“Equivalent”Plans21SelectSelectJoinCustomersReviewsProjectJoinMoviesSelectSelectJoinCustomersReviewsProjectJoinMoviesSelectSelectJoinCustomersReviewsProjectJoinMoviesSelectJoinCustomersReviewsJoinMoviesSelectProjectThe“original”planSelectsdistributeoverjoinsruleJoinCustomersReviewsJoinMoviesSelectProjectSelectSelectscommuteruleFourMore!22SelectSelectJoinCustomersReviewsProjectJoinMoviesThe“original”planSelectCustomersSelectReviewsProjectJoinMoviesJoinSelectCustomersSelectReviewsProjectJoinMoviesJoinSelectCustomersSelectReviewsProjectJoinMoviesJoinSelectReviewsJoinMoviesCustomersProjectJoinSelectJoincommutativityruleSelectcommutativityrule9LogicallyEquivalentPlans,

InTotal23SelectSelectJoinCustomersReviewsProjectJoinMoviesSelectSelectJoinCustomersReviewsProjectJoinMoviesSelectSelectJoinCustomersReviewsProjectJoinMoviesSelectJoinCustomersReviewsJoinMoviesSelectProjectSelectCustomersSelectReviewsProjectJoinMoviesJoinSelectCustomersSelectReviewsProjectJoinMoviesJoinSelectReviewsJoinMoviesCustomersProjectJoinSelectSelectCustomersSelectReviewsProjectJoinMoviesJoinJoinCustomersReviewsJoinMoviesSelectProjectSelectAll9logicalplanswillproducethesameresultForeachofthese9plansthereisalargenumberofalternativephysicalplansthattheoptimizercanchoosefromEnumeratelogicallyequivalentplansbyapplyingequivalencerulesForeachlogicallyequivalentplan,enumerateallalternativephysicalqueryplansEstimatethecostofeachofthealternativephysicalqueryplansRuntheplanwithlowestestimatedoverallcostQueryOptimization:

TheMainSteps✓2134✓PhysicalPlanExampleAssumethattheoptimizerhas:Threejoinstrategiesthatitcanselectfrom:nestedloops(NL),sort-mergejoin(SMJ),andhashjoin(HJ)Twoselectionstrategies:sequentialscan(SS)andindexscan(IS)Consideroneofthe9logicalplansHereisonepossiblephysicalplan

25SelectSelectJoinCustomersReviewsProjectJoinMoviesSSISHJCustomersReviewsProjectNLMoviesThereareactually36possiblephysicalalternativesforthissinglelogicalplan.(Iwastoolazytodrawpicturesofall36).With9equivalentlogicalplans,thereare324=(9*36)physicalplansthattheoptimizermustenumerateandcostaspartofthesearchforthebestexecutionplanforthequeryAndthiswasaVERYsimplequery!Laterwewilllookathowdynamicprogrammingisusedtoexplorethespaceoflogicalandphysicalplansw/oenumeratingtheentireplanspaceEnumeratelogicallyequivalentplansbyapplyingequivalencerulesForeachlogicallyequivalentplan,enumerateallalternativephysicalqueryplansEstimatethecostofeachofthealternativephysicalqueryplans.EstimatetheselectivityfactorandoutputcardinalityofeachpredicateEstimatethecostofeachoperatorRuntheplanwithlowestestimatedoverallcostQueryOptimization:

TheMainSteps✓2134✓✓SelectivityEstimationTaskofestimatinghowmanyrowswillsatisfyapredicatesuchasMovies.MID=932Planqualityishighlydependentonqualityoftheestimatesthatthequeryoptimizermakes27Histograms

arethestandardtechniqueusedtoestimateselectivityfactorsforpredicatesonasingletableManydifferentflavors:Equi-WidthEqui-HeightMax-Diff…HistogramMotivation28#ofReviewsforeachcustomer(totalof939rows)CustomerID(CID)valuesinReviewsTableSomeexamples:#1)Predicate:CID=9

ActualSel.Factor=55/939=.059#2)Predicate:2<=CID<=3

ActualSel.Factor=135/939=.144Ingeneral,thereisnotenoughspaceinthecatalogstostoresummarystatisticsforeachdistinctattributevalueThesolution:

histogramsEqui-WidthHistogramExample29CIDValuesCountCount1-417-2013-169-125-8Equi-widthhistogramYikes!8Xerror!!AllbucketscoverroughlythesamekeyrangeExample#1:Predicate:CID=9ActualSel.Factor=55/939=.059EstimatedSel.Factor=(186/4)/939=.050Example#2:Predicate:CID=5ActualSel.Factor=10/939=.011EstimatedSel.Factor=(309/4)/993=.082Equi-HeightHistograms30CountCountEqui-heighthistogramDividerangessothatallbucketscontainroughlythesamenumberofvalues1-516-2012-159-117-86Example#2:Predicate:CID=6ActualSel.Factor=157/939=.167EstimatedSel.Factor=(157/1)/993=.167Example#2:Predicate:CID=6ActualSel.Factor=157/939=.167EstimatedSel.Factor=(309/4)/993=.082Example#1:Predicate:CID=5ActualSel.Factor=10/939=.011EstimatedSel.Factor=(309/4)/993=.082Example#1:Predicate:CID=5ActualSel.Factor=10/939=.011EstimatedSel.Factor=(156/5)/993=.033Equi-widthvs.Equi-Height311-417-2013-169-125-8Equi-widthEqui-height1-516-2012-159-117-86HistogramSummaryHistogramsareacriticaltoolforestimatingselectivityfactorsforselectionpredicates32Errorsstilloccur,however!OtherstatisticsstoredbytheDBMSforeachtableinclude#ofrows,#ofpages,…EnumeratelogicallyequivalentplansbyapplyingequivalencerulesForeachlogicallyequivalentplan,enumerateallalternativephysicalqueryplansEstimatethecostofeachofthealternativephysicalqueryplans.EstimatetheselectivityfactorandoutputcardinalityofeachpredicateEstimatethecostofeachoperatorRuntheplanwithlowestestimatedoverallcostQueryOptimization:

TheMainSteps✓2134✓✓EstimatingCostsTwokeycoststhattheoptimizerconsiders:I/Otime–costofreadingpagesfrommassstorageCPUtime–costofapplyingpredicatesandoperatingontuplesinmemoryActualvaluesarehighlydependentonCPUandI/OsubsystemonwhichthequerywillberunFurthercomplicatingthejobofthequeryoptimizerForaparalleldatabasesystemsuchasPDW,thecostofredistributing/shufflingrowsmustalsobeconsideredWereyoupayingattentionorupdatingyourFacebookpagewhenItalkedaboutparallelqueryprocessing2yearsago?34IO+CPUvs.AnExampleQuery:SELECTAvg(Rating)FROMReviews

WHEREMID=932Twophysicalqueryplans:35ReviewsDateCIDMIDRatingPlan#1Avg_agg

[Cnt,Sum]SequentialScanReviewsFilter

MID=932Avg_agg

[Cnt,Sum]IndexLookup

MID=932MIDIndexReviewsPlan#2Whichplanischeaper???CostXCostYPlan#136Avg_agg

[Cnt,Sum]ScanReviewsFilter

MID=932Filterisappliedto10Mrows

Theoptimizerestimatesthat100rowswillsatisfythepredicateTableis100Kpageswith100rows/pageSortedondateAveragecomputationisappliedto100rows

Reviewsisscannedsequentiallyat

100MB/secondI/Otimeofscanis8secondsAt0.1microseconds/row,filterconsumes1secondofCPUtimeAt0.1microseconds/row,avgconsumes.00001secondsofCPUtimeOptimizerestimatestotalexecutiontimeof9secondsCostofPlan#1Plan#237Avg_agg

[Cnt,Sum]IndexLookup

MID=932MIDIndexReviews

100rowsareestimatedtosatisfythepredicateAveragecomputationisappliedto100rowsAt0.1microseconds/row,averageconsumes.00001seconds

ofCPUtime

100rowsareretrievedusingtheMIDindexSincetableissortedondatefield(andnotMIDfield),eachI/OrequiresarandomdiskI/O–

about.003secondsperdiskI/OI/Otimewillbe.3secondsOptimizerestimatestotalexecutiontimeof0.3secondsTheestimateforPlan#1was9seconds,soPlan#2isclearlythebetterchoiceCostofPlan#2But…WhatiftheestimateofthenumberofrowsthatsatisfythepredicateMID=932isWRONG?E.g.10,000rowsinsteadof100rows38Non-clusteredIndexisbetterhereSequentialscanisbetterhereEstimatingJoinCostsThreebasicjoinmethods:Nested-loopsjoinSort-mergejoinHash-joinVerydifferentperformancecharacteristicsCriticalforoptimizertocarefullypickwhichmethodtousewhen39JoinSelectC.City=“NY”SelectR.Rating>7JoinC.CID=R.CIDR.MID=M.MIDCustomersReviewsProjectM.Title,M.DirectorMoviesSort-MergeJoinAlgorithmSortReviewsonMIDcolumn (unlessalreadysorted)SortMoviesonMIDcolumn (unlessalreadysorted)“Merge”twosortedtables: Scaneachtablesequentialintandem

{ ForcurrentrowrofReviews

ForcurrentrowmofMoviesifr.MID=m.MIDproduceoutputrowAdvancerandmcursors }40Cost=|R|+|M|I/OsMergeJoinSortSortReviews(|R|pages)Movies(|M|pages)Reviews.MID=Movies.MIDCost=4*|M|I/OsTotalI/Ocost=5*|R|+5*|M|I/OsCost=4*|R|I/OsMainIdea:SortRandM

onthejoincolumn(MID),thenscanthemtodoa``merge’’(onjoincolumn),andoutputresulttuples.Nested-LoopsJoinForeachpageRi,1≤i≤|R|,ofReviews{

ReadpageRifromdisk ForeachMj,1≤j≤|M|,ofMovies { ReadpageMjfromdisk ForallrowsronpageRi { ForallrowsmonpageMj { ifr.MID=m.MIDproduceoutputrow } } }}41I/OCost=|R|+|R|*|M|NestedLoopsJoinMovies

(|M|pages)Reviews

(|R|pages)Reviews.MID=Movies.MIDMainIdea:ScanR,andforeachtupleinRprobetuplesinM(byscanningit).Outputresulttuples.MainIdea:ScanR,andforeachtupleinRprobetuplesinM(byprobingitsindex).Outputresulttuples.Index-NestedLoopsForeachpageRi,1≤i≤|R|,ofReviews{

ReadpageRifromdisk ForallrowsronpageRi { UseMIDindexonMovies

tofetchrowswithMIDattributes=r.MID

Formoutputrowforeachreturnedrow}} 42Movies

(|M|pages)NestedLoopsJoinReviews

Reviews.MID=Movies.MIDIndexLookup

usingr.MIDMIDIndex(|R|pages)SortedondatecolumnCost=|R|+|R|*(||R||/|R|)*22I/Os:1indexI/O+1movieI/Oas

Reviewstableissortedondatecolumn

||R||is#ofrowsinR

||R||/|R|givestheaveragenumberof

rowsofRperpageNoticethatsinceReviewsisorderedontheDatecolumn(andnotMID),soeachrowoftheMoviestableretrievedincurstworandomdiskI/Os:onetotheindexandonetothetableEstimatingResultCardinalitiesConsiderthequerySELECT*FROMReviewsWHERE7/1<date<7/31ANDrating>9AssumeReviewshas1MrowsAssumefollowingselectivityfactors:43Sel.Factor#ofqualifyingrows7/1<date<7/310.1100,000Review>90.0110,000Howmanyoutputrowswillthequeryproduce?Ifpredicatesarenotcorrelated.1*.01*1M=1,000rowsIfpredicatesarecorrelatedcouldbeashighas.1*1M=100,000rowsWhydoesthismatter?ThisisWhy!Assumethat:Reviewstableis10,000pageswith80rows/pageMoviestableis2,000pagesTheprimaryindexonMoviesisontheMIDcolumn44JoinR.MID=M.MIDSelectReviewsProjectMoviesRating>9and

7/1<date<7/31TheconsequencesofincorrectlyestimatingtheselectivityofthepredicateonReviewscanbeHUGEINLNLSMNotethateachjoinalgorithmhasaregionwhereitprovidesthebestperformanceMultidimensionalHistogramsUsedtocapturecorrelationbetweenattributesA2-Dexample451-45-89-1213-1617-2010-2021-3031-4041-5051-6061-70ALittleBitAboutEstimatingJoinCardinalitiesQuestion:GivenajoinofR

andS,whatistherangeofpossibleresultsizes(in#oftuples)?SupposethejoinisonakeyforR

andS

Students(sid,sname,did),Dorm(did,d.addr)SelectS.sid,D.addressFromStudentsS,DormsDWhereS.did=D.didWhatisthecardinality?46Astudentcanonlyliveinatmost1dorm:eachStuplecanmatchwithatmost1Dtuplecardinality(SjoinD)=cardinalityofSGeneralcase:joinon{A}(where{A}iskeyforneither)estimateeachtuplerofRgeneratesuniformnumberofmatchesinSandeachtuplesofSgeneratesuniformnumberofmatchesinR,e.g.

SF=min(||R||*||S||/NKeys(A,S)

||S||*||R||/NKeys(A,R))e.g.,SELECTM.title,R.titleFROMMoviesM,ReviewsRWHEREM.title=R.titleMovies:100tuples,75uniquetitles

1.3rowsforeachtitleReviews:20tuples,10uniquetitles

2rowsforeachtitleEstimatingJoinCardinality=100*20/10=200=20*100/75=26.6EnumeratelogicallyequivalentplansbyapplyingequivalencerulesForeachlogicallyequivalentplan,enumerateallalternativephysicalqueryplansEstimatethecostofeachofthealternativephysicalqueryplans.EstimatetheselectivityfactorandoutputcardinalityofeachpredicateEstimatethecostofeachoperatorRuntheplanwithlowestestimatedoverallcostQueryOptimization:

TheMainSteps✓2134✓✓EnumerateHowbigistheplanspaceforaqueryinvolvingNtables?enumerateItturnsoutthattheanswerdependsonthe“shape”ofthequeryTwoCommonQuery“Shapes”49ABJoinJoinJoinJoinCDF“Star”JoinQueriesABCDFJoinJoinJoinJoin“Chain”JoinQueriesNumberoflogicallyequivalentalternatives#ofTablesStarChain22

244840538422463,8401,3448645,12054,9121018,579,4502,489,344Inpractice,“typical”queriesfallsomewherebetweenthesetwoextremesPruningthePlanSpaceConsideronlyleft-deepqueryplanstoreducethesearchspace50ABCJoinJoinJoinJoinEDLeftDeepJoinJoinJoinJoinEDABCBushy

StarJoinQueriesChainJoinQueries#ofTablesBushyLeft-DeepBushyLeftDeep2222244812

4085384482241663,8402401,344328645,12010,08054,9121281018,579,450725,7602,489,344512Thesearecountsoflogicalplansonly!With:3joinmethodsnjoinsinaqueryTherewillbe3nphysicalplansforeachlogicalplanExample:Foraleft-deep,8tablestarjoinquerytherewillbe:10,080differentlogicalplans22,044,960differentphysicalplans!!Solution:Usesomeformofdynamicprogramming

(eitherbottomuportopdown)tosearchtheplanspaceheuristicallySometimestheseheuristicswillcausethebestplantobemissed!!OptimizationisperformedinNpasses(ifNrelationsarejoined):Pass1:

Findthebest(lowestcost)1-relationplanforeachrelation.Pass2:Findthebestwaytojointheresultofeach1-relationplan(astheouter/lefttable)toanotherrelation(astheinner/righttable)togenerate

all2-relationplans.PassN:Findbestwaytojoinresultofa(N-1)-relationplan(asouter)totheN’threlationtogenerateallN-relationplans.Ateachpass,foreachsubsetofrelations,pruneallplansexceptthoseLowestcostplanoverall,plusLowestcostplanforeachinterestingorderoftherowsOrderby,groupby,aggregatesetc.handledasthefinalstepBottom-UpQOUsingDynamicProgrammingInspiteofpruningplanspace,thisapproachisstillexponentialinthe#oftables.

Interestingordersincludeordersthatfacilitatetheexecutionofjoins,aggregates,andorderbyclausessubsequentlybythequery52AASSAISBBSSCCSSCISDDSSDIS27387313429518AllsinglerelationplansAlltablesFirst,generateallsinglerelationplans:ASelectJoinJoinCSelectJoinDBSelectAnExample:Legend:SS–sequentialscan

IS–indexscan

–cost5Prune53BSS73ASSAIS2713DSS42CIS18AllsinglerelationplansafterpruningThen,AllTwoRelationPlansTwoRelationPlansStartingWithA54BSS73AIS27ASS13DSS42CIS18ASelectJoinJoinCSelectJoinDBSelectASSBSSNLJAISBSSNLJAISBSSSMJASSBSSSMJJoinSelectABA.a=B.a1013822315293SinglerelationplansPruneLet’sassumethereare2alternativejoinmethodsfortheQOtoselectfrom:NLJ=NestedLoopsJoinSMJ=SortMergeJoinTwoRelationPlansStartingWithB55SelectABJoinA.A=B.aBSSASSNLJBSSASSSMJBSSNLJAISBSSSMJAISSelectDBJoinB.b=D.bSelectCBJoinB.C=C.cBSSDSSNLJBSSDSSSMJNLJBSSCISBSSSMJCISASelectJoinJoinCSelectJoinDBSelect101331575629315204322321932SinglerelationplansBSS73AIS27ASS13DSS42CIS18PruneTwoRelationPlansStartingWithC56SelectCBJoinB.C=C.cNLJBSSCISBSSSMJCISASelectJoinJoinCSelectJoinDBSelect6520932SinglerelationplansBSS73AIS27ASS13DSS42CIS18PruneTwoRelationPlansStartingWithD57SelectDBJoinB.b=D.bDSSBSSNLJDSSBSSSMJASelectJoinJoinCSelectJoinDBSelect1520432SinglerelationplansBSS73AIS27ASS13DSS42CIS18PruneNext,AllThreeRelationPlans58AISBSSSMJDSSBSSSMJPrunedtworelationplansBSSSMJCISBSSSMJAISBSSDSSSMJBSSSMJCISASelectJoinJoinCSelectJoinDBSelectNext,AllThreeRelationPlans59AISBSSSMJFullyprunedtworelationplansBSSSMJCISBSSDSSSMJASelectJoinJoinCSelectJoinDBSelectNLJCISAISBSSSMJSMJCISAISBSSSMJDSSNLJAISBSSSMJDSSSMJAISBSSSMJ1)ConsideringtheTwoRelationPlansThatStartedWithANext,AllThreeRelationPlans60AISBSSSMJFullyprunedtworelationplansBSSSMJCISBSSDSSSMJASelectJoinJoinCSelectJoinDBSelectBSSDSSSMJASSNLJBSSDSSSMJASSSMJNLJAISBSSDSSSMJSMJAISBSSDSSSMJNLJCISBSSDSSSMJSMJCISBSSDSSSMJ2)ConsideringtheTwoRelationPlansThatStartedWithBNext,AllThreeRelationPlans61

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论