2023学年黑龙江哈尔滨市高三下学期第一次联考数学试卷含解析_第1页
2023学年黑龙江哈尔滨市高三下学期第一次联考数学试卷含解析_第2页
2023学年黑龙江哈尔滨市高三下学期第一次联考数学试卷含解析_第3页
2023学年黑龙江哈尔滨市高三下学期第一次联考数学试卷含解析_第4页
2023学年黑龙江哈尔滨市高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.2.若实数、满足,则的最小值是()A. B. C. D.3.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切4.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.105.设等差数列的前项和为,若,则()A.10 B.9 C.8 D.76.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.988.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.59.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.()A. B. C. D.11.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π12.在中,角、、所对的边分别为、、,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在点处的切线方程是,则的值等于__________.14.函数的极大值为________.15.双曲线的焦点坐标是_______________,渐近线方程是_______________.16.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.18.(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.19.(12分)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).(Ⅰ)证明:平面平面垂直;(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.20.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.21.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.22.(10分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.2.D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.3.D【解析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.4.C【解析】

取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.5.B【解析】

根据题意,解得,,得到答案.【详解】,解得,,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.6.B【解析】

构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.7.C【解析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.8.A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.9.B【解析】

分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.10.D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.11.D【解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.12.D【解析】

利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14.【解析】

对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.15.【解析】

通过双曲线的标准方程,求解,,即可得到所求的结果.【详解】由双曲线,可得,,则,所以双曲线的焦点坐标是,渐近线方程为:.故答案为:;.【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.16.100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,∴样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析,;(2)证明见解析【解析】

(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【点睛】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.18.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,从而BD⊥AC,进而四边形ABCD是菱形,由此能证明AB=AD.(Ⅱ)设AC与BD的交点为G,推导出EC//FG,取BC的中点为O,连结OD,则OD⊥BC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】(Ⅰ)证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:(Ⅱ)设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,因为平面平面,所以面,以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,,,,,,,设平面的法向量,则,取,同理可得平面的法向量,设平面与平面的夹角为,因为,所以二面角的余弦值为.解法二:(Ⅱ)设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,,所以平面,所以,取中点,连接、,因为,所以,故平面,所以,即是二面角的平面角,不妨设,因为,,在中,,所以,所以二面角的余弦值为.【点睛】本题考查求空间角中的二面角的余弦值,还考查由空间中线面关系进而证明线线相等,属于中档题.19.(Ⅰ)见解析(Ⅱ)存在,此时为的中点.【解析】

(Ⅰ)证明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假设存在点满足题意,过作于,平面,过作于,连接,则,过作于,连接,是二面角的平面角,设,,计算得到答案.【详解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假设存在点满足题意,过作于,由知,易证平面,所以平面,过作于,连接,则(三垂线定理),即是二面角的平面角,不妨设,则,在中,设(),由得,即,得,∴,依题意知,即,解得,此时为的中点.综上知,存在点,使得二面角的余弦值,此时为的中点.【点睛】本题考查了面面垂直,根据二面角确定点的位置,意在考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.20.(Ⅰ)证明见解析;(Ⅱ)【解析】

(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.21.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意可知:由,求得点坐标,即可求得椭圆的方程;(Ⅱ)设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围.【详解】解:(Ⅰ)根据题意是等腰直角三角形,,设由得则代入椭圆方程得椭圆的方程为(Ⅱ)根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即②由①②得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论