2023学年河北深州市长江高三第五次模拟考试数学试卷含解析_第1页
2023学年河北深州市长江高三第五次模拟考试数学试卷含解析_第2页
2023学年河北深州市长江高三第五次模拟考试数学试卷含解析_第3页
2023学年河北深州市长江高三第五次模拟考试数学试卷含解析_第4页
2023学年河北深州市长江高三第五次模拟考试数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,,则()A. B. C. D.2.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1 B.C.2 D.33.设函数的定义域为,命题:,的否定是()A., B.,C., D.,4.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.5.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.46.偶函数关于点对称,当时,,求()A. B. C. D.7.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为()A. B.2 C.4 D.8.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为().A. B. C. D.9.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A. B. C. D.10.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.11.己知函数的图象与直线恰有四个公共点,其中,则()A. B.0 C.1 D.12.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.14.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.15.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.16.函数的定义域是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.18.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.19.(12分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.20.(12分)已知x∈R,设,,记函数.(1)求函数取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.21.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.22.(10分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.2.B【解析】

设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.【详解】设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.故选:B.【点睛】本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.3.D【解析】

根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.4.D【解析】

将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题5.D【解析】

先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.6.D【解析】

推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【详解】由于偶函数的图象关于点对称,则,,,则,所以,函数是以为周期的周期函数,由于当时,,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.7.C【解析】

设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.8.C【解析】

设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.9.A【解析】

可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题10.B【解析】

依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题11.A【解析】

先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,,因为,故,所以.故选:A.【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.12.C【解析】

设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.14.18【解析】

根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18【点睛】本题主要考查系统抽样的定义和方法,属于简单题.15.【解析】

取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.16.【解析】

由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.【详解】解:由题意得,,解得,所以,故答案为:【点睛】此题考查函数定义域的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)曲线的普通方程为;直线的直角坐标方程为(2)【解析】

(1)利用消去参数,将曲线的参数方程化成普通方程,利用互化公式,将直线的极坐标方程化为直角坐标方程;(2)根据(1)求出曲线的极坐标方程,分别联立射线与曲线以及射线与直线的极坐标方程,求出和,即可求出.【详解】解:(1)因为(为参数),所以消去参数,得,所以曲线的普通方程为.因为所以直线的直角坐标方程为.(2)曲线的极坐标方程为.设的极径分别为和,将()代入,解得,将()代入,解得.故.【点睛】本题考查利用消参法将参数方程化成普通方程以及利用互化公式将极坐标方程化为直角坐标方程,还考查极径的运用和两点间距离,属于中档题.18.(1);(2)见解析.【解析】

(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数;当时,,此时,函数为减函数.,.①当,即当时,函数有一个零点;②当,即当时,函数有两个零点;③当,即当时,函数有三个零点;④当,即当时,函数有两个零点;⑤当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【点睛】本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题.19.(Ⅰ)C的方程为,焦点F的坐标为(1,0);(Ⅱ)1【解析】

(Ⅰ)根据抛物线定义求出p,即可求C的方程及焦点F的坐标;

(Ⅱ)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)−1(k≠0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|•|NF|的值.【详解】(Ⅰ)由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)−1(k≠0).由得,则,.因为点A,B在抛物线C上,所以,.因为PF⊥x轴,所以,所以|MF|⋅|NF|的值为1.【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.20.(1);(2)【解析】

(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1).令,k∈Z,即时,,取最小值,所以,所求的取值集合是;(2)由,得,因为,所以,所以,.在中,由余弦定理,得,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论