(浙江专用)2011届高中数学二轮复习 第18课时 直线与圆锥曲线(3)课件 新人教版_第1页
(浙江专用)2011届高中数学二轮复习 第18课时 直线与圆锥曲线(3)课件 新人教版_第2页
(浙江专用)2011届高中数学二轮复习 第18课时 直线与圆锥曲线(3)课件 新人教版_第3页
(浙江专用)2011届高中数学二轮复习 第18课时 直线与圆锥曲线(3)课件 新人教版_第4页
(浙江专用)2011届高中数学二轮复习 第18课时 直线与圆锥曲线(3)课件 新人教版_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题五解析几何第18课时直线与圆锥曲线(三)(2)待定系数法:已知曲线的类型,先设方程再求参数.(3)代入法:当所求动点随已知曲线上动点的动而动时用此法,代入法的步骤:①设出两动点坐标(x,y),(x0,y0).②结合已知找出x,y与x0,y0的关系,并用x,y表示x0,y0.③将x0,y0代入它满足的曲线方程,得到x,y的关系式即为所求.(4)定义法:结合几种曲线的定义,明确所求曲线的类型,进而求得曲线的方程.3.有关弦的中点问题(1)通法.(2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率.点差法的步骤:①将两交点A(x1,y1),B(x2,y2)的坐标代入曲线的方程;②作差消去常数项得到关于x1+x2,x1-x2,y1+y2,y1-y2的关系式.③求出AB的斜率4.取值范围问题(1)椭圆上的点到焦点的距离的最大值为a+c,最小值为a-c;(2)双曲线上的点到左焦点的最小距离为c-a;(3)抛物线上的点到焦点的距离的最小值为p/2.

由向量作为载体的解析几何问题一要利用向量的几何意义,二要熟悉向量的坐标运算.而与圆锥曲线有关的求参数的取值范围问题则常与不等式(组)或求函数的值域相联系.

(2)问中,建立未知参数与“范围参数”(已知范围的参数)之间的联系;把未知参数的范围问题化归为“范围参数”的范围问题是解题的关键.存在性问题是探索性问题中最典型也是最常见的问题,一般应从假设存在入手,证明结论存在,或出现矛盾的结论否定其存在.

存在性问题首先要根据题设条件、几何意义、隐含条件列出方程(组)或不等式(组),解得变量的值或范围.且求出变量的值或范围后必须检验,才能确定它是否存在.要求离心率的取值范围就要找到一个关于圆锥曲线的基本量a,b,c的一个不等关系;存在性问题有时也可先从特殊情形、特殊位置、极端状态猜出,然后对一般情况时加以证明与探究.

合情推理,大胆猜想,细心论证,要注意讨论两个角的范围.

1.解决参数的取值范围问题常用的方法有两种:①不等式(组)求解法:根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的取值范围;②函数值域求解法:把所讨论的参数表示为有关某个变量的函数,通过讨论函数的值域求参数的变化范围.

2.解答存在型探索性问题的方法一般也有两种:①先假设某数学对象存在,然后据此推理或计算,直至得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论