版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四、連鎖律與泰勒展開式2.
範例:1.
連鎖律。4.
範例:設f(x)=(x2x+1)10(x2)20,求f(1)。3.
連鎖律規則。5.
範例:6.
泰勒展開式。7.
範例:將f(x)=x5+x3+x
表成(x1)的多項式。8.
因式定理與導數。9.
範例:若(x+1)2可整除f(x)=x20+ax3+bx1,求a、b
的值。點擊數字(1~9)選取觀看內容,或空白處按右鍵選「結束放映」可回「乙、微分」1.連鎖律(2)當z
是y
的函數,且y
是x的函數,(1)y=f(x)的導函數常用y或f(x)或則z
是x的函數,且z
的導函數空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」TobecontinuedTheend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」2.範例
Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」3.連鎖律規則Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」4.範例(1)設f(x)=(x22x1)10,求f(2)。(2)設f(x)=(x2x+1)10(x2)20,求f(1)。解:(1)f(x)=10(x22x1)9(2x2)。
f(2)=10(1)9(2)=20。(2)f(x)=[10(x2x+1)9(2x1)](x2)20+(x2x+1)10[20(x2)19]
1
f(1)=[10
19
1](1)20+110[20(1)19]=1020=10
。Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」切線LxOy5.範例Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」8+124+1+8+124+8+20例:將f(x)=8x3+4x216x+5連續使用綜合除法除以(x1)8+20+16f(x)=8x3+4x216x+518+416+5=(8x2+12x4)(x1)+1=[(8x+20)(x1)+16](x1)+1={[8(x1)+28](x1)+16}(x1)+1則f(x)=8(x1)3+28(x1)2+16(x1)+1。+88
+28(1)n次多項式f(x)=Anxn+An1xn1+……+A2x2+A1x+A0皆可表為形如f(x)=an(xk)n+an1(xk)n1+……+a2(xk)2+a1(xk)+a06.泰勒展開式還有2
頁空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」(2)若f(x)=Anxn+An1xn1+……+A2x2+A1x+A0=an(xk)n+an1(xk)n1+…+a2(xk)2+a1(xk)+a0f(x)=nan(xk)n1+(n1)an1(xk)n2+…+2a2(xk)1+1a1f(x)=n(n1)an(xk)n2+(n1)(n2)an1(xk)n3+…+21a2f
n1(x)=n(n1)…2an(xk)1+(n1)(n2)…21an1f
n(x)=n(n1)(n2)…21an
f(k)=1a1
f(k)=21a2
fn1(k)=(n1)(n2)…21an1…則有:Tobecontinued空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」f
n(k)=n(n1)(n2)…21anf(x)=a0+a1(xk)+a2(xk)2+…+an(xk)n故得泰勒展開式如下:(3)由(2)知:Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」f
n(k)=n(n1)(n2)…21an7.範例(1)將f(x)=x5+x3+x
表成(x1)的多項式。(2)求f(x)=x5+x3+x
除以(x1)3
的餘式。=(x1)5+5(x1)4+11(x1)3+13(x1)2+9(x1)+3。(2)由(1)知:f(x)除以(x1)3
的餘式=13(x1)2+9(x1)+3=13x217x+7。Theend空白處按右鍵選「結束放映」可回「四、連鎖律與泰勒展開式」8.因式定理與導數說明:由泰勒展開式得則f(x)除以(xk)m
的餘式為所以多項式
f(x)有因式(xk)m
f(x)除以(xk)m
的餘式為0Theend空白處按右鍵選「結
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三寒假总结
- 二零二五年度抵冲货款跨境电商金融结算合同3篇
- 二零二五年度房屋租赁担保合同范本(含租赁合同登记备案)3篇
- Unit 6 My clothes,my style welcome to the unit 说课稿2024-2025学年牛津译林版英语七年级上册
- 浙江省金华市婺城区2024-2025学年九年级上学期期末数学试卷(含答案)
- 二零二五年度彩钢房租赁与临时办公解决方案协议3篇
- 2024-2025学年云南省昆明市官渡区八年级(上)期末英语试卷(含答案)
- 二零二五年度企业间电子合同范本及操作手册2篇
- Unit 3 The world meets China Project 说课稿 -2023-2024学年高二英语外研版(2019)选择性必修第四册
- Unit 5读写课第一课时说课稿 - 2024-2025学年外研版(2024)七年级英语上册
- 液化气供应站安全管理制度和营业制度
- 停车场施工施工组织设计方案
- GB/T 21385-2008金属密封球阀
- GB/T 18994-2003电子工业用气体高纯氯
- 超分子化学简介课件
- 文言文阅读训练:《三国志-武帝纪》(附答案解析与译文)
- (完整版)招聘面试方案设计与研究毕业论文设计
- 调休单、加班申请单
- 肉制品生产企业名录296家
- 规划设计收费标准
- 山区道路安全驾驶教案
评论
0/150
提交评论