原子吸收荧光光谱_第1页
原子吸收荧光光谱_第2页
原子吸收荧光光谱_第3页
原子吸收荧光光谱_第4页
原子吸收荧光光谱_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

会计学1原子吸收荧光光谱12.1概述历史:

1802年,发现原子吸收现象;1955年,Australia

物理学家WalshA将该现象应用于分析;60年代中期发展最快。

AAS是基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。AAS与AES之比较:相似之处——产生光谱的对象都是原子,而且都是利用原子外层电子跃迁;不同之处——AAS是基于“基态原子”选择性吸收光辐射能(h),并使该光辐射强度降低而产生的光谱(共振吸收线);

AES是基态原子受到热、电或光能的作用,原子从基态跃迁至激发态,然后再返回到基态时所产生的光谱(共振发射线和非共振发射线)。第1页/共42页AAS特点:1)灵敏度高:火焰原子法,ppm级,有时可达ppb级;石墨炉可达10-9—10-14(ppt级或更低).2)准确度高:FAAS的RSD可达1~3%。3)干扰小,选择性极好;4)测定范围广,可测70种元素。不足:多元素同时测定有困难;对非金属及难熔元素的测定尚有困难;对复杂样品分析干扰也较严重;石墨炉原子吸收分析的重现性较差。第2页/共42页12.2基本理论一、基态原子数与总原子数的关系待测元素在进行原子化时,其中必有一部分原子吸收了较多的能量而处于激发态。据热力学原理,当在一定温度下处于热力学平衡时,激发态原子数与基态原子数之比服从Boltzmann分配定律:可见,Ni/N0的大小主要与“波长”及“温度”有关。即a)当温度保持不变时:激发能(h)小或波长长,Ni/N0则大,即波长长的原子处于激发态的数目多;但在AAS中,波长不超过600nm。换句话说,激发能对Ni/N0的影响有限!b)温度增加,则Ni/N0大,即处于激发态的原子数增加;且Ni/N0随温度

T增加而呈指数增加。第3页/共42页二、原子谱线轮廓以频率为,强度为I0的光通过原子蒸汽,其中一部分光被吸收,使该入射光的光强降低为I:

据吸收定律,得其中K为一定频率的光吸收系数。(和基态原子的数目有关)注意:K不是常数,而是与谱线频率或波长有关。由于任何谱线并非都是无宽度的几何线,而是有一定频率或波长宽度的,即谱线是有轮廓的!因此将K作为常数而使用此式将带来偏差!原子蒸汽lhI0

I

第4页/共42页

根据吸收定律的表达式,以I~和K-分别作图得吸收强度与频率的关系及谱线轮廓。可见谱“线”是有宽度的。图中:K—吸收系数;K0—最大吸收系数;0,0—中心频率或波长(由原子能级决定);,—谱线轮廓半宽度(K0/2处的宽度);第5页/共42页三、谱线变宽因素(Linebroadening)1.自然变宽无外界因素影响时谱线具有的宽度。其大小为(K为激发态寿命或电子在高能级上停留的时间,10-7-10-8s)原子在基态和激发态的寿命是有限的。电子在基态停留的时间长,在激发态则很短。由海森堡测不准(HeisenbergUncertaintyprinciple)原理,这种情况将导致激发态能量具有不确定的量,该不确定量使谱线具有一定的宽度N(10-5nm),即自然宽度。该宽度比光谱仪本身产生的宽度要小得多,只有极高分辨率的仪器才能测出,故可勿略不计。

第6页/共42页2.Doppler变宽:它与相对于观察者的原子的无规则热运动有关。又称热变宽。

光子观测光子观测(0+D)(0-D)

可见,Doppler变宽

与谱线波长、相对原子质量和温度有关,

多在10-3

nm数量级第7页/共42页3.压变宽(Pressureeffect)吸收原子与外界气体分子之间的相互作用引起的变宽,又称为碰撞(Collisionalbroadening)变宽。它是由于碰撞使激发态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为a)Lorentz

变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。b)Holtzmark变宽:待测原子之间的碰撞,又称共振变宽;但由于

AAS分析时,待测物浓度很低,该变宽可勿略。外界压力增加——谱线中心频率0位移、形状和宽度发生变化——

发射线与吸收线产生错位——影响测定灵敏度;温度在1500-30000C之间,压力为1.01310-5Pa——热变宽和压变宽有相同的变宽程度;火焰原子化器——压变宽为主要;石墨炉原子化器——热变宽为主要。4.场致变宽5.自吸与自蚀第8页/共42页四、积分吸收与峰值吸收系数1.积分吸收在原子吸收光谱中,无论是光源辐射的发射线还是吸收线都有一定的宽度,亦即吸收定律(A=Kl)中的K不是常数,而是一定频率范围内的积分值,或称其为积分吸收:

式中,e为电子电荷;m为电子质量;f为振子强度,它是受到激发的每个原子的平均电子数,与吸收几率成正比。此式说明,在一定条件下,“积分吸收”只与基态原子数成正比而与频率及产生吸收线的轮廓无关。只要测得积分吸收值,即可求出基态原子数或浓度。因此AAS法是一种不需要标准比较的绝对分析方法!

第9页/共42页2.峰值吸收

1955年,Walsh指出,在温度不太高时,当发射线和吸收线满足以下两个条件,即:

当e

a时,发射线很窄,发射线的轮廓可认为是一个矩形,则在发射线的范围内各波长的吸收系数近似相等,即K=K0,因此可以“峰值吸收”代替“积分吸收”:上式中K0是一个与基态原子数目相关的物理量,K0=K*C上式表明,当用锐线光源作原子吸收测定时,所得A与原子蒸气中待测元素的基态原子数成正比。第10页/共42页3.锐线光源根据Walsh的两点假设,发射线必须是“锐线”(半宽度很小的谱线)。1)锐线半宽很小,锐线可以看作一个很“窄”的矩形;2)二者中心频率相同,且发射线宽度被吸收线完全“包含”,即在可吸收的范围之内;可见,Walsh的理论为AAS光源设计具有理论指导意义。

0I吸收线发射线峰值吸收的测量第11页/共42页6.3AAS仪器及其组成

AAS仪器由光源、原子化系统(类似样品容器)、分光系统及检测系统。原子吸收仪器结构示意图空心阴极灯原子化器单色仪检测器原子化系统雾化器样品液废液切光器助燃气燃气第12页/共42页一、光源及光源调制对AAS光源的要求:

a)发射稳定的共振线,且为锐线;

b)强度大,没有或只有很小的连续背景;

c)操作方便,寿命长。1.空心阴极灯(HollowCathodeLamp,HCL)第13页/共42页组成:阳极(吸气金属如W,Ni,Ti或Ta)、空心圆筒形(使待测原子集中)阴极(内衬待测元素或其化合物)、低压惰性气体(Ar或

Ne,谱线简单、背景小)。工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空心阴极内并因碰撞而被激发----待测元素特征共振发射线(特征谱线)。影响谱线性质之因素:电极材料、电流、充气种类及压力。电流越大,光强越大,但过大则谱线变宽且强度不稳定;充入低压惰性气体可防止与元素反应并减小碰撞变宽。第14页/共42页二.原子化器(Atomizer)

原子化器是将样品中的待测组份转化为基态原子的装置。1.火焰原子化器由四部分组成:

a)喷雾器;

b)雾化室

c)燃烧器

d)火焰第15页/共42页a)喷雾器:将试样溶液转为雾状。要求稳定、雾粒细而均匀、雾化效率高、适应性高(可用于不同比重、不同粘度、不同表面张力的溶液)。b)雾化室:内装撞击球和扰流器(去除大雾滴并使气溶胶均匀)。将雾状溶液与各种气体充分混合而形成更细的气溶胶并进入燃烧器。

c)燃烧器:产生火焰并使试样蒸发和原子化的装置。有单缝和三缝两种形式,其高度和角度可调(让光通过火焰适宜的部位并有最大吸收)。燃烧器质量主要由燃烧狭缝的性质和质量决定(光程、回火、堵塞、耗气量)。第16页/共42页d)火焰火焰分焰心(发射强的分子带和自由基,很少用于分析)、内焰(基态原子最多,为分析区)和外焰(火焰内部生成的氧化物扩散至该区并进入环境)。燃烧速度:混合气着火点向其它部分的传播速度。当供气速度大于燃烧速度时,火焰稳定。但过大则导致火焰不稳或吹熄火焰,过小则可造成回火。天然气-空气火焰第17页/共42页火焰的燃助比:任何一种火焰均可按燃气与助燃气的比例分为三类具不同性质的火焰:1)化学计量型:指燃助比近似于二者反应的计量关系,又称中性火焰。温度高、稳定、干扰小、背景低,适于大多数元素分析;2)富燃火焰:燃气比例较大的火焰(燃助比大于化学计量比)。燃烧不完全、温度略低,具还原性,适于难分解的氧化物的元素分析。但干扰较大、背景高。3)贫燃火焰:助燃气大于化学计量的火焰。温度最低,具氧化性,适于易解离和易电离的元素,如碱金属。第18页/共42页2.石墨炉原子化器(GraphitefurnaceAtomizer)石墨炉组成包括电源、保护系统和石墨管三部分。第19页/共42页1)电源:10~25V,500A。用于产生高温。2)保护系统:保护气(Ar)分成两路管外气——防止空气进入,保护石墨管不被氧化、烧蚀。管内气——流经石墨管两端及加样口,可排出空气并驱除加热初始阶段样品产生的蒸汽。冷却水——金属炉体周围通水,以保护炉体。3)石墨管:多采用石墨炉平台技术。如前图b),在管内置一放样品的石墨片,当管温度迅速升高时,样品因不直接受热(热辐射),因此原子化时间相应推迟。或者说,原子化温度变化较慢,从而提高重现性。另外,从经验得知,当石墨管孔隙度小时,基体效应和重现性都得到改善,因此通常使用裂解石墨作石墨管材。第20页/共42页原子化过程原子化过程可分为四个阶段,即干燥、灰化、原子化和净化:干燥温度oC时间,t净化原子化灰化虚线:阶梯升温实线:斜坡升温干燥:去除溶剂,防样品溅射;灰化:使基体和有机物尽量挥发除去;原子化:待测物化合物分解为基态原子,此时停止通Ar,延长原子停留时间,提高灵敏度;净化:样品测定完成,高温去残渣,净化石墨管。思考:试比较FAAS和GFAAS的优缺点!(P134)第21页/共42页优点:原子化程度高,试样用量少(1~100μL),可测固体及粘稠试样,灵敏度高,检测限可低达10-12g/L。缺点:精密度差,测定速度较慢,操作不够简便,装置复杂。第22页/共42页

3.低温原子化(或称化学原子化)

包括汞蒸汽原子化和氢化物原子化。1)汞蒸汽原子化(测汞仪)将试样中汞的化合物以还原剂(如SnCl2)还原为汞蒸汽,并通过Ar或N2将其带入吸收池进行测定。例如:水样中无机汞和有机汞的测定步骤如下。a)25mL样品+SnCl2--------Hg----------吹入载气N2------AAS测定,得到“无机汞”;b)25mL样品+过量KMnO4---转化有机汞为无机汞---吹入载气—AAS

测定,得到“总汞”;c)总汞-无机汞=有机汞。第23页/共42页氢化物原子化测定示意图2)氢化物原子化原理:可将待测物从在一定酸度条件下,将试样以还原剂(NaBH4)还原为元素的气态氢化物,并通过Ar或N2将其带入热的石英管内原子化并测定(右图)。可用于As,Pb,Hg,Sb,Se等元素的测定。优点:大量基体中分离出来,DL比火焰法低1-3个数量级,选择性好且干扰也小。第24页/共42页三、分光系统同其它光学分光系统一样,原子吸收光度计中的分光系统亦包括出射、入射狭缝、反射镜和色散原件(多用光栅)。单色器的作用在于将空心阴极灯阴极材料的杂质发出的谱线、惰性气体发出的谱线以及分析线的邻近线等与共振吸收线分开。必须注意:在原子吸收光度计中,单色器通常位于光焰之后,这样可分掉火焰的杂散光并防止光电管疲劳。由于锐线光源的谱线简单,故对单色器的色散率要求不高(线色散率为10~30Å/mm)。

四、检测器:使用光倍增管并可直接得到测定的吸收度信号(详见前述)。第25页/共42页6.4干扰及其消除一、物理干扰来源:试样粘度、表面张力的不同使其进入火焰的速度或喷雾效率改变引起的干扰。消除:可通过配制与试样具有相似组成的标准溶液或标准加入法来克服。

二、化学干扰来源:Analytes(Targetspecies)与共存元素发生化学反应生成难挥发的化合物所引起的干扰,主要影响原子化效率,使待测元素吸光度的降低。消除:1.加入释放剂:SO42-、PO43-对Ca2+的干扰----加入La(III)、Sr(II)---释放Ca2+;2.加入保护剂(配合剂):

PO43-对Ca2+的干扰---加入EDTA----CaY(稳定但易破坏)。含氧酸中Mg和Al形成MgAl2O4---使A急剧下降-----加8-羟基喹啉作保护剂。3.加入缓冲剂或基体改进剂:主要对GFAAS。例如加入EDTA可使Cd的原子化温度降低。4.化学分离:溶剂萃取、离子交换、沉淀分离等第26页/共42页三、电离干扰来源:高温导致原子电离,从而使基态原子数减少,吸光度下降。消除:加入消电离剂(主要为碱金属元素化合物),产生大量电子,从而抑制待测原子的电离。如大量KCl的加入可抑制Ca的电离,

KK+eCa++eCa四、光谱干扰1.谱线重叠干扰:由于光源发射锐线,因此,谱线重叠干扰较少;如发生重叠干扰,则要求仪器可分辨两条波长相差0.1Å的谱线。消除:另选分析线。如V线(3082.11Å)对Al线(3082.15Å)的干扰;多谱线的元素产生的谱线之间的干扰等。2.非吸收线干扰:来自被测元素自身的其它谱线或光源中杂质的谱线。消除:减小狭缝和灯电流或另选分析线。3.火焰的直流发射:火焰的连续背景发射,可通过光源调制消除。第27页/共42页4.火焰背景干扰来自燃烧气的背景干扰

宽带吸收:火焰生成物的分子受激产生的宽带光谱对入射光的吸收;

粒子散射:火焰中粒子对光的散射。消除:以上两种干扰方式都产生正误差(A增加)。因干扰主要来自燃烧气,因此可通过空白进行校正。来自样品基体的背景干扰

宽带吸收:样品基体中分子或其碎片的形成、有机溶剂分子或其碎片对光的吸收,如CaOH分子宽带对Ba线的干扰。

粒子散射:一些高浓度的元素,如Ti,Zr,W的氧化物,它们的氧化物具有分馏效应且直径较大,可对光产生散射;有机溶剂的不完全燃烧产生的微粒碳也会对光产生散射。消除:更换燃气(如用N2O);改变测量参数(T,燃助比);加入辐射缓冲剂(Radiationbuffer)。如果知道干扰来源,可在标准液和样品中加入同样且大量的干扰物质。第28页/共42页1)邻近非共振线背景校正(Thetwo-linecorrectionmethod)参比谱线选择:参比线与测量线很近(保证二者经过的背景一致)待测物基态原子不吸收参比线。参比线是待测原子的非共振线或光源内惰性气体元素的谱线。

因为共振线(此时为分析线)的总吸光度AT包括基态原子的吸收A和背景吸收AB,即AT=A+AB

通过测量共振线旁的“邻近线”的吸收,得到AB

此时得到净吸收度A=AT-AB12基态原子+背景ABAT1为共振线;2为邻近线由于很难找到符合上述条件的“邻近线”,故此法应用较少。第29页/共42页2)连续光源背景校正(Thecontinuum-sourcecorrectionmethod)

切光器使锐线源和氘灯源交替进入原子化器。然后分别测定吸光值:

A锐=A+AB

A氘=a+AB=AB则A=A锐-AB=A锐-A氘式中a为基态原子对连续光源的吸光值,因待测原子浓度很低,相对而言,a可勿略。紫外区用氘灯;可见光区用碘钨灯或氙灯。评论:尽管很多仪器均带有这种扣背景装置,但其性能并不理想!主要原因在于:连续光源和切光器可降低S/N;原子化焰中气相介质和粒子分布不均,对两个光源的排列要求极高;大多仪器装配的D灯不适于可见光区(I太小)。第30页/共42页6.5原子吸收分析方法一、测量条件优化1.分析线的选择

通常选共振线(最灵敏线或且大多为最后线),但不是绝对的。如Hg185nm比Hg254nm灵敏50倍,但前者处于真空紫外区,大气和火焰均对其产生吸收;共振线Ni232nm附近231.98和232.12nm的原子线和231.6nm的离子线,不能将其分开,可选取341.48nm

作分析线。此外当待测原子浓度较高时,为避免过度稀释和向试样中引入杂质,可选取次灵敏线!2.Slit宽度选择调节Slit宽度,可改变光谱带宽(=SD),也可改变照射在检测器上的光强。一般狭缝宽度选择在通带为0.4~4.0nm的范围内,对谱线复杂的元素如Fe、Co

和Ni,需在通带相当于1Å或更小的狭缝宽度下测定。第31页/共42页3.灯电流选择灯电流过小,光强低且不稳定;灯电流过大,发射线变宽,灵敏度下降,且影响光源寿命。选择原则:在保证光源稳定且有足够光输出时,选用最小灯电流(通常是最大灯电流的1/2~2/3),最佳灯电流通过实验确定。4.原子化条件火焰原子化:火焰类型(温度-背景-氧/还环境);燃助比(温度-氧/还环境);燃烧器高度(火焰部位-温度);石墨炉原子化:升温程序的优化。具体温度及时间通过实验确定。干燥——105oC除溶剂,主要是水;灰化——基体,尤其是有机质的去除。在不损失待测原子时,使用尽可能高的温度和长的时间;原子化——通过实验确定何时基态原子浓度达最大值;净化——短时间(3~5s)内去除试样残留物,温度应高于原子化温度。第32页/共42页二、测量方法1.标准曲线法标液配制注意事项:合适的浓度范围;扣除空白;标样和试样的测定条件相同;每次测定重配标准系列。2.标准加入法:主要是为了克服标样与试样基体不一致所引起的误差(基体效应)。注意事项:须线性良好;至少四个点(在线性范围内可用两点直接计算);只消除基体效应,不消除分子和背景吸收;斜率小时误差大。3.内标法优点:消除气体流量、进样量、火焰湿度、样品雾化率、溶液粘度以及表面张力等的影响,适于双波道和多波道的AAS。第33页/共42页6.6原子荧光光谱(AtomicFluorescenceSpectrometry,AFS)一、定义通过测定原子在光辐射能作用下发射的荧光强度进行定量分析的一种发射光谱分析方法。因所用仪器与AAS仪器相近,因而将其放在AAS一章中阐述。二、特点1)灵敏度高,检出限较低。采用高强度光源可进一步降低检出限;2)谱线干扰少;3)校正曲线范围宽(3-5个数量级);4)易制成多道仪器---多元素同时测定;5)荧光猝灭效应、复杂基体效应等可使测定灵敏度降低;6)散射光干扰;7)可测量的元素不多,应用不广泛(主要因为AES和AAS的广泛应用,与它们相比,AFS没有明显的优势)第34页/共42页三、基本原理1.荧光的产生气态原子吸收光源的特征辐射后,原子外层电子跃迁到激发态,然后返回到基态或较低能态,同时发射出与原激发波长相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论