




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FloatingPointPresentationOutlineFloating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsProgramminglanguagessupportnumberswithfractionCalledfloating-point
numbersExamples: 3.14159265…(π) 2.71828…(e) 0.000000001or1.0×10–9(secondsinananosecond) 86,400,000,000,000or8.64×1013(nanosecondsinaday)
lastnumberisalargeintegerthatcannotfitina32-bitintegerWeuseascientificnotationtorepresentVerysmallnumbers(e.g.1.0×10–9)Verylargenumbers(e.g.8.64×1013)Scientificnotation:±d
.
f1f2f3f4…×10±e1e2e3TheWorldisNotJustIntegersExamplesoffloating-pointnumbersinbase10…5.341×103,0.05341×105,–2.013×10–1,–201.3×10–3Examplesoffloating-pointnumbersinbase2…1.00101×223,0.0100101×225,–1.101101×2–3,–1101.101×2–6ExponentsarekeptindecimalforclarityThebinarynumber(1101.101)2=23+22+20+2–1+2–3=13.625Floating-pointnumbersshouldbenormalizedExactlyonenon-zerodigitshouldappearbeforethepointInadecimalnumber,thisdigitcanbefrom1to9Inabinarynumber,thisdigitshouldbe1NormalizedFPNumbers:5.341×103and–1.101101×2–3NOTNormalized:0.05341×105and–1101.101×2–6Floating-PointNumbersdecimalpointbinarypointAfloating-pointnumberisrepresentedbythetripleSistheSignbit(0ispositiveand1isnegative)RepresentationiscalledsignandmagnitudeEistheExponentfield(signed)VerylargenumbershavelargepositiveexponentsVerysmallclose-to-zeronumbershavenegativeexponentsMorebitsinexponentfieldincreases
rangeofvaluesFistheFractionfield(fractionafterbinarypoint)MorebitsinfractionfieldimprovestheprecisionofFPnumbers Valueofafloating-pointnumber=(-1)S
×val(F)×2val(E)Floating-PointRepresentationSExponentFractionNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsIEEE754Floating-PointStandardFoundinvirtuallyeverycomputerinventedsince1980Simplifiedportingoffloating-pointnumbersUnifiedthedevelopmentoffloating-pointalgorithmsIncreasedtheaccuracyoffloating-pointnumbersSinglePrecisionFloatingPointNumbers(32bits)1-bitsign+8-bitexponent+23-bitfractionDoublePrecisionFloatingPointNumbers(64bits)1-bitsign+11-bitexponent+52-bitfractionSExponent8Fraction23SExponent11Fraction52(continued)Foranormalizedfloatingpointnumber(S,E,F)Significandisequalto(1.F)2=(1.f1f2f3f4…)2IEEE754assumeshidden1.
(notstored)fornormalizednumbersSignificandis1bitlongerthanfractionValueofaNormalizedFloatingPointNumberis (–1)S
×(1.F)2×2val(E) (–1)S
×(1.f1f2f3f4…)2×2val(E) (–1)S
×(1+f1×2-1+f2×2-2+f3×2-3+f4×2-4…)2×2val(E)
(–1)S
is1whenSis0(positive),and–1whenSis1(negative)NormalizedFloatingPointNumbersSEF=f1
f2
f3
f4
…BiasedExponentRepresentationHowtorepresentasignedexponent?Choicesare…Sign+magnituderepresentationfortheexponentTwo’scomplementrepresentationBiasedrepresentationIEEE754usesbiasedrepresentationfortheexponentValueofexponent=val(E)=E–Bias(Biasisaconstant)Recallthatexponentfieldis8bitsforsingleprecisionEcanbeintherange0to255E=0andE=255arereservedforspecialuse(discussedlater)E=1to254areusedfornormalizedfloatingpointnumbersBias=127(halfof254),val(E)=E
–127val(E=1)=–126,val(E=127)=0,val(E=254)=127BiasedExponent–Cont’dFordoubleprecision,exponentfieldis11bitsEcanbeintherange0to2047E=0andE=2047arereservedforspecialuseE=1to2046areusedfornormalizedfloatingpointnumbersBias=1023(halfof2046),val(E)=E
–1023val(E=1)=–1022,val(E=1023)=0,val(E=2046)=1023ValueofaNormalizedFloatingPointNumberis (–1)S
×(1.F)2×2E–Bias (–1)S
×(1.f1f2f3f4…)2×2E–Bias (–1)S×(1+f1×2-1+f2×2-2+f3×2-3+f4×2-4…)2×2E–Bias
ExamplesofSinglePrecisionFloatWhatisthedecimalvalueofthisSinglePrecisionfloat?Solution:Sign=1isnegativeExponent=(01111100)2=124,E–bias=124–127=–3Significand=(1.0100…0)2=1+2-2=1.25(1.isimplicit)Valueindecimal=–1.25×2–3=–0.15625Whatisthedecimalvalueof?Solution:Valueindecimal=+(1.01001100…0)2×2130–127= (1.01001100…0)2×23=(1010.01100…0)2=10.3751011111000100000000000000000000001000001001001100000000000000000implicitExamplesofDoublePrecisionFloatWhatisthedecimalvalueofthisDoublePrecisionfloat?Solution:Valueofexponent=(10000000101)2–Bias=1029–1023=6Valueofdoublefloat=(1.00101010…0)2×26(1.isimplicit)=
(1001010.10…0)2=74.5Whatisthedecimalvalueof?Doityourself!
(answershouldbe–1.5×2–7=–0.01171875)01000000010100101010000000000000000000000000000000000000000000001011111110001000000000000000000000000000000000000000000000000000ConvertingFPDecimaltoBinaryConvert–0.8125tobinaryinsingleanddoubleprecisionSolution:Fractionbitscanbeobtainedusingmultiplicationby20.8125×2 =1.6250.625×2 =1.250.25×2 =0.50.5×2 =1.0Stopwhenfractionalpartis0Fraction=(0.1101)2=(1.101)2×2–1
(Normalized)Exponent=–1+Bias=
126(singleprecision)
and1022(double)0.8125=(0.1101)2=½+¼+1/16=13/16101111110101000000000000000000001011111111101010000000000000000000000000000000000000000000000000SinglePrecisionDoublePrecisionLargestNormalizedFloatWhatistheLargestnormalized
float?SolutionforSinglePrecision:Exponent–bias=254–127=127(largestexponentforSP)Significand=(1.111…1)2=almost2Valueindecimal≈2×2127≈2128≈3.4028…×1038
SolutionforDoublePrecision:Valueindecimal≈2×21023≈21024≈1.79769…×10308Overflow:exponentistoolargetofitintheexponentfield011111110111111111111111111111110111111111101111111111111111111111111111111111111111111111111111SmallestNormalizedFloatWhatisthesmallest(inabsolutevalue)normalized
float?SolutionforSinglePrecision:Exponent–bias=1–127=–126(smallestexponentforSP)Significand=(1.000…0)2=1Valueindecimal=1×2–126=1.17549…×10–38
SolutionforDoublePrecision:Valueindecimal=1×2–1022=2.22507…×10–308Underflow:exponentistoosmalltofitinexponentfield000000001000000000000000000000000000000000010000000000000000000000000000000000000000000000000000Zero,Infinity,andNaNZeroExponentfieldE=0andfractionF=0+0and–0arepossibleaccordingtosignbitS
InfinityInfinityisaspecialvaluerepresentedwithmaximumEandF
=0Forsingleprecision
with8-bitexponent:maximumE=255Fordoubleprecision
with11-bitexponent:maximumE=2047Infinitycanresultfromoverflowordivisionbyzero+∞and–∞arepossibleaccordingtosignbitSNaN(NotaNumber)NaNisaspecialvaluerepresentedwithmaximumEandF≠0Resultfromexceptionalsituations,suchas0/0orsqrt(negative)OperationonaNaNresultsisNaN:Op(X,NaN)=NaNDenormalizedNumbersIEEEstandardusesdenormalizednumbersto…Fillthegapbetween0andthesmallestnormalizedfloatProvidegradualunderflowtozeroDenormalized:exponentfieldEis0andfractionF
≠0Implicit1.beforethefractionnowbecomes0.(notnormalized)Valueofdenormalizednumber(S,0,F) Singleprecision: (–1)
S
×(0.F)2×2–126 Doubleprecision: (–1)
S
×(0.F)2×2–1022DenormDenorm+∞PositiveOverflow-∞NegativeOverflowNegativeUnderflowPositiveUnderflowNormalized(–ve)Normalized(+ve)2–12621280-2128-2–126IEEE754floatingpointnumbersareorderedBecauseexponentusesabiasedrepresentation…ExponentvalueanditsbinaryrepresentationhavesameorderingPlacingexponentbeforethefractionfieldordersthemagnitudeLargerexponentlargermagnitudeForequalexponents,Largerfractionlargermagnitude0<(0.F)2×2Emin
<(1.F)2
×2E–Bias<∞(Emin=1–Bias)Becausesignbitismostsignificantquicktestof
signed<
IntegercomparatorcancomparemagnitudesIntegerMagnitudeComparatorX<YX=YX>YX=(EX
,FX)Y=(EY
,FY)Floating-PointComparisonSummaryofIEEE754EncodingSingle-PrecisionExponent=8Fraction=23ValueNormalizedNumber1to254Anything±(1.F)2×2E
–127DenormalizedNumber0nonzero±(0.F)2×2–126Zero00±0Infinity2550±∞NaN255nonzeroNaNDouble-PrecisionExponent=11Fraction=52ValueNormalizedNumber1to2046Anything±(1.F)2×2E
–1023DenormalizedNumber0nonzero±(0.F)2×2–1022Zero00±0Infinity20470±∞NaN2047nonzeroNaNNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsFloatingPointAdditionExampleConsideradding:(1.111)2×2–1+(1.011)2×2–3Forsimplicity,weassume4bitsofprecision(or3bitsoffraction)Cannotaddsignificands…Why?BecauseexponentsarenotequalHowtomakeexponentsequal?Shiftthesignificandofthelesserexponentright untilitsexponentmatchesthelargernumber(1.011)2×2–3
=
(0.1011)2×2–2
=
(0.01011)2×2–1
Differencebetweenthetwoexponents=–1–(–3)=2So,shiftrightby2bitsNow,addthesignificands:Carry1.1110.01011
10.00111+AdditionExample–cont’dSo,(1.111)2×2–1+(1.011)2×2–3=(10.00111)2×2–1However,result(10.00111)2×2–1isNOTnormalizedNormalize
result:
(10.00111)2×2–1=(1.000111)2×20
Inthisexample,wehaveacarrySo,shiftrightby1bitandincrementtheexponentRoundthesignificand
tofitinappropriatenumberofbitsWeassumed4bitsofprecisionor3bitsoffractionRoundtonearest:(1.000111)2≈(1.001)2RenormalizeifroundinggeneratesacarryDetectoverflow/underflowIfexponentbecomestoolarge(overflow)
ortoosmall
(underflow)1.000111
11.001+FloatingPointSubtractionExampleConsider:(1.000)2×2–3
–(1.000)2×22Weassumeagain:4bitsofprecision(or3bitsoffraction)ShiftsignificandofthelesserexponentrightDifferencebetweenthetwoexponents=2–(–3)=5Shiftrightby5bits:(1.000)2×2–3
=
(0.00001000)2×22Convertsubtractionintoadditionto2'scomplement+0.00001×22–1.00000×2200.00001×2211.00000×2211.00001×22SignSinceresultisnegative,convertresultfrom2'scomplementtosign-magnitude2’sComplement–0.11111×222’sComplementSubtractionExample–cont’dSo,(1.000)2×2–3
–(1.000)2×22
=–0.111112×22Normalize
result:
–
0.111112×22=–1.11112×21
Forsubtraction,wecanhaveleadingzerosCountnumberzofleadingzeros
(inthiscasez=1)ShiftleftanddecrementexponentbyzRoundthesignificand
tofitinappropriatenumberofbitsWeassumed4bitsofprecisionor3bitsoffractionRoundtonearest:(1.1111)2≈(10.000)2Renormalize:roundinggeneratedacarry –1.11112×21≈–10.0002×21=–1.0002×22Resultwouldhavebeenaccurateifmorefractionbitsareused1.111
1
110.000+FloatingPointAddition/Subtraction1. Comparetheexponentsofthetwonumbers.Shiftthesmallernumbertotherightuntilitsexponentwouldmatchthelargerexponent.2. Add/Subtractthesignificandsaccordingtothesignbits.3. Normalizethesum,eithershiftingrightandincrementingtheexponentorshiftingleftanddecrementingtheexponent4. Roundthesignificandtotheappropriatenumberofbits,andrenormalizeifroundinggeneratesacarryStartDoneOverfloworunderflow?ExceptionyesnoShiftsignificandrightbyd=|EX–EY
|AddsignificandswhensignsofXandYareidentical,SubtractwhendifferentX–YbecomesX+(–Y)Normalizationshiftsrightby1ifthereisacarry,orshiftsleftbythenumberofleadingzerosinthecaseofsubtractionRoundingeithertruncatesfraction,oraddsa1toleastsignificantfractionbitFloatingPointAdderBlockDiagramczEZEXFXShiftRight/LeftInc/DecEYSwapFYShiftRightExponentSubtractorSignificandAdder/Subtractor11signSignComputationd=|EX–EY|max(EX,EY)add/subtractRoundingLogicsignSYadd/subFZSZcSXzDetectcarry,orCountleading0’sc01Next...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsFloatingPointMultiplicationExampleConsidermultiplying:1.0102×2–1by–1.1102×2–2Asbefore,weassume4bitsofprecision(or3bitsoffraction)Unlikeaddition,weaddtheexponentsoftheoperandsResultexponentvalue=(–1)+(–2)=–3Usingthebiasedrepresentation:EZ=EX+EY–BiasEX=(–1)+127=126(Bias=127forSP)EY=(–2)+127=125EZ=126+125–127=124(value=–3)Now,multiplythesignificands: (1.010)2×(1.110)2=(10.001100)21.0101.110
000010101010101010001100×3-bitfraction3-bitfraction6-bitfractionMultiplicationExample–cont’dSincesignSX≠SY,signofproductSZ=1(negative)So,1.0102×2–1×–1.1102×2–2
=–10.0011002×2–3However,result:–10.0011002×2–3isNOTnormalizedNormalize:
10.0011002×2–3=1.00011002×2–2
Shiftrightby1bitandincrementtheexponentAtmost1bitcanbeshiftedright…Why?Round
thesignificand
tonearest: 1.00011002≈1.0012(3-bitfraction) Result≈–1.0012×2–2
(normalized)Detectoverflow/underflowNooverflow/underflow
becauseexponentiswithinrange1.0001100
11.001+FloatingPointMultiplication1. Addthebiasedexponentsofthetwonumbers,subtractingthebiasfromthesumtogetthenewbiasedexponentMultiplythesignificands.Settheresultsigntopositiveifoperandshavesamesign,andnegativeotherwise3. Normalizetheproductifnecessary,shiftingitssignificandrightandincrementingtheexponent4. Roundthesignificandtotheappropriatenumberofbits,andrenormalizeifroundinggeneratesacarryStartDoneOverfloworunderflow?ExceptionyesnoBiasedExponentAdditionEZ
=EX+EY
–BiasResultsignSZ=SX
xor
SYcanbecomputedindependentlySincetheoperandsignificands1.FXand1.FYare≥1and<2,theirproductis≥1and<4.Tonormalizeproduct,weneedtoshiftrightby1bitonlyandincrementexponentRoundingeithertruncatesfraction,oraddsa1toleastsignificantfractionbitNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsExtraBitstoMaintainPrecisionFloating-pointnumbersareapproximationsfor…RealnumbersthattheycannotrepresentInfinitevarietyofrealnumbersexistbetween1.0and2.0However,exactly223fractionscanberepresentedinSP,andExactly252fractionscanberepresentedinDP(doubleprecision)Extrabitsaregeneratedinintermediateresultswhen…Shiftingandadding/subtractingap-bitsignificandMultiplyingtwop-bitsignificands(productcanbe2pbits)Butwhenpackingresultfraction,extrabitsarediscardedWeonlyneedfewextrabitsinanintermediateresultMinimizinghardwarebutwithoutcompromisingprecisionGuardBitGuardbit:guardsagainstlossofasignificantbitOnlyoneguardbitisneededtomaintainaccuracyofresultShiftedleft(ifneeded)duringnormalizationaslastfractionbitExampleontheneedofaguardbit:1.00000000101100010001101×25–
1.00000000000000010011010×2-2
(subtraction)1.00000000101100010001101×25–
0.000000100000000000000010011010×25
(shiftright7bits)
1.00000000101100010001101×2511.111111011111111111111101100110×25(2'scomplement)
00.111111101011000100010111100110×25(addsignificands)
+1.11111101011000100010111100010×24(normalized)Guardbit–donotdiscardRoundandStickyBitsTwoextrabitsareneededforroundingJustafternormalizingaresultsignificandRoundbit: appearsjustafterthenormalizedsignificandStickybit: appearsaftertheroundbit(ORofalladditionalbits)ReducethehardwareandstillachieveaccuratearithmeticAsifresultsignificandwascomputedexactlyandroundedConsiderthesameexampleofpreviousslide:1.00000000101100010001101×2511.111111011111111111111101100110×25(2'scomplement)
00.11111110101100010001011111×25(sum)
+1.1111110101100010001011111×24(normalized)RoundbitStickybitOR-reduceFourRoundingModesNormalizedresulthastheform:1.f1
f2…fl
r
sTheroundbit
randstickybit
sappearafterthelastfractionbitflIEEE754standardspecifiesfourmodesofroundingRoundtoNearestEven:defaultroundingmodeIncrementresultif:rs=“11”or(rs=“10”andfl=‘1’)Otherwise,truncateresultsignificandto1.f1
f2…fl
Roundtoward+∞:resultisroundedupIncrementresultifsignispositiveandrors=‘1’Roundtoward–∞:resultisroundeddownIncrementresultifsignisnegativeandrors=‘1’Roundtoward0:alwaystruncateresultRoundfollowingresultusingIEEE754roundingmodes:
–1.1111111111111111111111101×2-7RoundtoNearestEven:Truncateresultsincer=‘0’TruncatedResult:–1.11111111111111111111111×2-7Roundtowards+∞:Roundtowards–∞:Incrementedresult:
–10.00000000000000000000000×2-7Renormalizeandincrementexponent(becauseofcarry)Finalroundedresult:
–1.00000000000000000000000×2-6Roundtowards0:ExampleonRoundingRoundBitStickyBitTruncateresultsincenegativeIncrement
sincenegativeands=‘1’TruncatealwaysAdvantagesofIEEE754StandardUsedpredominantlybytheindustryEncodingofexponentandfractionsimplifiescomparisonIntegercomparatorusedtocomparemagnitudeofFPnumbersIncludesspecialexceptionalvalues:NaNand±∞Specialrulesareusedsuchas:0/0isNaN,sqrt(–1)isNaN,1/0is∞,and1/∞is0ComputationmaycontinueinthefaceofexceptionalconditionsDenormalizednumberstofillthegapBetweensmallestnormalizednumber1.0×2EminandzeroDenormalizednumbers,values0.F×2Emin
,areclosertozeroGradualunderflow
tozeroOperationsaresomewhatmorecomplicatedInadditiontooverflowwecanhaveunderflowAccuracycanbeabigproblemExtrabitstomaintainprecision:guard,round,andstickyFourroundingmodesDivisionbyzeroyieldsInfinityZerodividebyzeroyieldsNot-a-NumberOthercomplexitiesImplementingthestandardcanbetrickySeetextfordescriptionof80x86andPentiumbug!NotusingthestandardcanbeevenworseFloatingPointComplexitiesNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsCalledCoprocessor1ortheFloatingPointUnit(FPU)32separatefloatingpointregisters:$f0,$f1,…,$f31FPregistersare32bitsforsingleprecisionnumbersEven-oddregisterpairformadoubleprecisionregisterUsetheevennumberfordoubleprecisionregisters$f0,$f2,$f4,…,$f30areusedfordoubleprecisionSeparateFPinstructionsforsingle/doubleprecisionSingleprecision: add.s,sub.s,mul.s,div.s
(.sextension)Doubleprecision:add.d,sub.d,mul.d,div.d
(.dextension)FPinstructionsaremorecomplexthantheintegeronesTakemorecyclestoexecuteMIPSFloatingPointCoprocessorFPArithmeticInstructionsInstructionMeaningFormatadd.s fd,fs,ft(fd)=(fs)+(ft)0x110ft5fs5fd50add.d fd,fs,ft(fd)=(fs)+(ft)0x111ft5fs5fd50sub.s fd,fs,ft(fd)=(fs)–(ft)0x110ft5fs5fd51sub.d fd,fs,ft(fd)=(fs)–(ft)0x111ft5fs5fd51mul.s fd,fs,ft(fd)=(fs)×(ft)0x110ft5fs5fd52mul.d fd,fs,ft(fd)=(fs)×(ft)0x111ft5fs5fd52div.s fd,fs,ft(fd)=(fs)/(ft)0x110ft5fs5fd53div.d fd,fs,ft(fd)=(fs)/(ft)0x111ft5fs5fd53sqrt.s fd,fs(fd)=sqrt(fs)0x1100fs5fd54sqrt.d fd,fs(fd)=sqrt(fs)0x1110fs5fd54abs.s fd,fs(fd)=abs(fs)0x1100fs5fd55abs.d fd,fs(fd)=abs(fs)0x1110fs5fd55neg.s fd,fs(fd)=–(fs)0x1100fs5fd57neg.d fd,fs(fd)=–(fs)0x1110fs5fd57Separatefloatingpointload/storeinstructionslwc1: loadwordcoprocessor1ldc1: loaddoublecoprocessor1swc1: storewordcoprocessor1sdc1: storedoublecoprocessor1Betternamescanbeusedfortheaboveinstructionsl.s=lwc1(loadFPsingle), l.d=ldc1(loadFPdouble)s.s=swc1(storeFPsingle), s.d=sdc1(storeFPdouble)FPLoad/StoreInstructionsInstructionMeaningFormatlwc1 $f2,40($t0)($f2)=Mem[($t0)+40]0x31$t0$f2im16=40ldc1 $f2,40($t0)($f2)=Mem[($t0)+40]0x35$t0$f2im16=40swc1 $f2,40($t0)Mem[($t0)+40]=($f2)0x39$t0$f2im16=40sdc1 $f2,40($t0)Mem[($t0)+40]=($f2)0x3d$t0$f2im16=40GeneralpurposeregisterisusedasthebaseregisterMovingdatabetweengeneralpurposeandFPregistersmfc1: movefromcoprocessor1 (togeneralpurposeregister)mtc1: movetocoprocessor1 (fromgeneralpurposeregister)MovingdatabetweenFPregistersmov.s: movesingleprecisionfloatmov.d: movedoubleprecisionfloat=even/oddpairofregistersFPDataMovementInstructionsInstructionMeaningFormatmfc1 $t0,$f2($t0)=($f2)0x110$t0$f200mtc1 $t0,$f2($f2)=($t0)0x114$t0$f200mov.s $f4,$f2($f4)=($f2)0x1100$f2$f46mov.d $f4,$f2($f4)=($f2)0x1110$f2$f46FPConvertInstructionsInstructionMeaningFormatcvt.s.w fd,fstosinglefrominteger0x1100fs5fd50x20cvt.s.d fd,fstosinglefromdouble0x1110fs5fd50x20cvt.d.w fd,fstodoublefrominteger0x1100fs5fd50x21cvt.d.s fd,fstodoublefromsingle0x1110fs5fd50x21cvt.w.s fd,fstointegerfromsingle0x1100fs5fd50x24cvt.w.d fd,fstointegerfromdouble0x1110fs5fd50x24Convertinstruction:cvt.x.yConverttodestinationformatxfromsourceformatySupportedformatsSingleprecisionfloat =.s (singleprecisionfloatinFPregister)Doubleprecisionfloat =.d (doublefloatineven-oddFPregister)Signedintegerword =.w (signedintegerinFPregister)FPCompareandBranchInstructionsInstructionMeaningFormatc.eq.s fs,ftcflag=((fs)==(ft))0x110ft5fs500x32c.eq.d fs,ftcflag=((fs)==(ft))0x111ft5fs500x32c.lt.s fs,ftcflag=((fs)<=(ft))0x110ft5fs500x3cc.lt.d fs,ftcflag=((fs)<=(ft))0x111ft5fs500x3cc.le.s fs,ftcflag=((fs)<=(ft))0x110ft5fs500x3ec.le.d fs,ftcflag=((fs)<=(ft))0x111ft5fs500x3ebc1f Labelbranchif(cflag==0)0x1180im16bc1t Labelbranchif(cflag==1)0x1181im16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省深圳市实验学校2025年高考仿真模拟化学试卷含解析
- 山东省济南育英中学2025年高考化学三模试卷含解析
- 上海市第二工业大学附属龚路中学2025届高三下学期第六次检测化学试卷含解析
- 2025年涂镀产品:镀铝锌合作协议书
- 2025年钢化真空玻璃项目发展计划
- 幼儿园急救安全知识培训
- 护士固定牙粘接护理配合
- 福建省福州八中2025届高考化学倒计时模拟卷含解析
- 四川省广元天立学校2025届高考化学考前最后一卷预测卷含解析
- 妊娠性高血压的饮食护理
- 液压与气压传动完整版课件
- 建设工程施工合同(示范文本)GF-2020-0201模板
- 2013-04 FLUENT工程技术与实例分析(套装上下册) 周俊杰、徐国权、 张华俊 中国水利水电出版社
- 慢性阻塞性肺病.ppt
- 采矿试题题库
- 人教版高一数学必修一全套教案
- 大连市历年居民收入及职工工资统计数据
- 厌氧氨氧化ppt
- 基于PLC的污水处理控制系统设计毕业设计(论文)
- 总监巡视工作记录
- 压力容器制造检验验收制度14
评论
0/150
提交评论