版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖北省黄石市统招专升本高等数学二自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(100题)1.函数f(x)在[a,b]上连续是f(x)在该区间上可积的()A.必要条件,但非充分条件
B.充分条件,但非必要条件
C.充分必要条件
D.非充分条件,亦非必要条件
2.
3.
A.-2B.-1/2C.1/2D.2
4.A.A.
B.
C.
D.
5.设u=u(x),v=v(x)是可微的函数,则有d(uv)=A.A.udu+vdvB.u'dv+v'duC.udv+vduD.udv-vdu
6.
7.
8.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,是甲射中的概率为【】A.0.6B.0.75C.0.85D.0.9
9.
10.A.-2B.-1C.0D.2
11.【】
A.1B.0C.2D.1/2
12.
13.
14.A.A.
B.
C.
D.
15.
16.
17.
18.某建筑物按设计要求使用寿命超过50年的概率为0.8,超过60年的概率为0.6,该建筑物经历了50年后,它将在10年内倒塌的概率等于【】A.0.25B.0.30C.0.35D.0.40
19.
20.A.A.仅有一条B.至少有一条C.不一定存在D.不存在21.A.A.
B.
C.
D.
22.A.A.2,-1B.2,1C.-2,-1D.-2,1
23.
24.A.低阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.高阶无穷小量25.A.A.1B.1/2C.-1/2D.+∞26.以下结论正确的是().A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为?(x)的极值点
C.若函数f(x)在点x0处有极值,且fˊ(x0)存在,则必有fˊ(x0)=0
D.若函数f(x)在点x0处连续,则fˊ(x0)一定存在
27.
28.从1,3,5,7中任取两个不同的数,分别记作k,b,作直线y=kx+b,则最多可作直线()。A.6条B.8条C.12条D.24条
29.
30.()。A.3B.2C.1D.2/3
31.
32.
33.
34.设F(x)的一个原函数为xln(x+1),则下列等式成立的是().
A.
B.
C.
D.
35.()。A.1/2B.1C.2D.3
36.
37.
38.()。A.sin(x2y)
B.x2sin(x2y)
C.-sin(x2y)
D.-x2sin(x2y)
39.A.A.
B.
C.
D.
40.A.A.
B.
C.
D.
41.若x=-1和x=2都是函数f(x)=(α+x)eb/x的极值点,则α,b分别为A.A.1,2B.2,1C.-2,-1D.-2,142.A.-2ycos(x+y2)
B.-2ysin(x+y2)
C.2ycos(x+y2)
D.2ysin(x+y2)
43.
A.
B.
C.
D.
44.()。A.0B.-1C.1D.不存在
45.
46.
47.
48.()。A.
B.
C.
D.
49.设f(x)=xe2(x-1),则在x=1处的切线方程是()。A.3x-y+4=0B.3x+y+4=0C.3x+y-4=0D.3x-y-2=050.()。A.-1B.0C.1D.2
51.
52.
53.()。A.
B.
C.
D.
54.
55.()。A.
B.
C.
D.
56.()。A.
B.
C.
D.
57.
58.设?(x)具有任意阶导数,且,?ˊ(x)=2f(x),则?″ˊ(x)等于().
A.2?(x)B.4?(x)C.8?(x)D.12?(x)
59.
60.A.A.0B.1/2C.1D.2
61.
62.
63.()。A.
B.
C.
D.
64.设函数f(x)=xlnx,则∫f'(x)dx=__________。A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C
65.
66.
67.【】
A.一定有定义B.一定有f(x0)=AC.一定连续D.极限一定存在
68.
69.已知f(x)=xe2x,,则f'(x)=()。A.(x+2)e2x
B.(x+2)ex
C.(1+2x)e2x
D.2e2x
70.
71.
72.
73.
74.
()
75.
76.()。A.0B.1C.nD.n!77.A.A.
B.
C.
D.
78.设函数f(x)在x=1处可导,且f(1)=0,若f"(1)>0,则f(1)是()。A.极大值B.极小值C.不是极值D.是拐点
79.
80.
81.
82.
83.3个男同学与2个女同学排成一列,设事件A={男女必须间隔排列},则P(A)=A.A.3/10B.1/10C.3/5D.2/5
84.
85.
86.
87.
88.
89.
90.
91.()。A.0B.1C.2D.3
92.
93.曲线:y=3x2-x3的凸区间为【】
A.(-∞,1)B.(1,+∞)C.(-∞,0)D.(0,+∞)
94.
95.已知f'(x+1)=xex+1,则f'(x)=A.A.xex
B.(x-1)ex
C.(x+1)ex
D.(x+1)ex+41
96.
97.
98.
99.
100.
二、填空题(20题)101.
102.设y=3sinx,则y'__________。
103.设z=ulnv,而u=cosx,v=ex,则dz/dx=__________。
104.
105.
106.
107.108.
109.
110.111.二元函数?(x,y)=2+y2+xy+x+y的驻点是__________.
112.
113.∫sinxcos2xdx=_________。
114.
115.
116.
117.
118.
119.
120.
三、计算题(10题)121.设函数y=x3+sinx+3,求y’.
122.
123.
124.
125.
126.
127.
128.
129.
130.
四、解答题(10题)131.
132.
133.
134.135.(本题满分10分)设z=z(x,y)由方程x2+x2=lnz/y确定,求dz.
136.(本题满分8分)
137.用直径为30cm的圆木,加工成横断面为矩形的梁,求当横断面的长和宽各为多少时,横断面的面积最大。最大值是多少?
138.
139.
140.
五、综合题(10题)141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
六、单选题(0题)151.设函数f(x)在x=1处可导,且f(1)=0,若f"(1)>0,则f(1)是()。A.极大值B.极小值C.不是极值D.是拐点
参考答案
1.B根据定积分的定义和性质,函数f(x)在[a,b]上连续,则f(x)在[a,b]上可积;反之,则不一定成立。
2.A
3.A此题暂无解析
4.C
5.C
6.A
7.
8.B
9.A
10.D根据函数在一点导数定义的结构式可知
11.D
12.A
13.
14.B
15.C
16.D
17.C
18.A设A={该建筑物使用寿命超过50年},B={该建筑物使用寿命超过60年},由题意,P(A)=0.8,P(B)=0.6,所求概率为:
19.C
20.B
21.C
22.B
23.
24.C
25.D本题考查的知识点是反常积分收敛和发散的概念.
26.C本题考查的主要知识点是函数在一点处连续、可导的概念,驻点与极值点等概念的相互关系,熟练地掌握这些概念是非常重要的.要否定一个命题的最佳方法是举一个反例,
例如:
y=|x|在x=0处有极小值且连续,但在x=0处不可导,排除A和D.
y=x3,x=0是它的驻点,但x=0不是它的极值点,排除B,所以命题C是正确的.
27.D
28.C由于直线y=kx+b与k,b取数时的顺序有关,所以归结为简单的排列问题
29.6
30.D
31.A
32.C
33.A
34.A本题考查的知识点是原函数的概念.
35.C
36.B
37.C
38.D
39.A
40.C
41.B
42.A
43.B本题考查的知识点是复合函数的概念及其求导计算.
44.D
45.C
46.A
47.1
48.B
49.D因为f'(x)=(1+2x)e2(x-1),f'(1)=3,则切线方程的斜率k=3,切线方程为y-1=3(x-1),即3x-y一2=0,故选D。
50.D
51.D
52.C解析:
53.C
54.A解析:
55.B
56.C
57.B
58.C
59.B解析:
60.B
61.A
62.C
63.B
64.A
65.D解析:
66.C
67.D
68.A
69.Cf'(x)=(xe2x)'=e2x+2xe2x=(1+2x)e2x。
70.B
71.B
72.B
73.A
74.C
75.D
76.D
77.B
78.B
79.D解析:
80.C
81.B
82.C
83.B
84.A
85.B
86.C
87.16/15
88.A
89.A
90.A
91.C
92.ln|x+sinx|+C
93.By=3x2-x3,y'=6x-3x2,y”=6-6x=6(1-x),显然当x>1时,y”<0;而当x<1时,y”>0.故在(1,+∞)内曲线为凸弧.
94.C
95.A用换元法求出f(x)后再求导。
用x-1换式中的x得f(x)=(x-1)ex,
所以f'(x)=ex(x-1)ex=xex。
96.x=1
97.D
98.A
99.D
100.B
101.
102.3sinxln3*cosx
103.cosx-xsinx
104.4
105.
106.1/y107.ln(lnx)+C
108.
109.
110.111.应填x=-1/3,y=-1/3.
本题考查的知识点是多元函数驻点的概念和求法.
112.-arcosx2
113.
114.
115.B
116.
117.C
118.D119.
120.121.y’=(x3)’+(sinx)’+(3)’=3x2+cosx.
122.
123.
124.
125.
126.
1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《四季》听评课记录
- 三都水族自治县2024年一级造价工程师《土建计量》模拟预测试卷含解析
- 《儿童保健胡啸》课件
- 《财务分析模版》课件
- 理学研究成果分享模板
- 礼仪教育讲座模板
- 《说明重要》课件
- 04970 学前卫生学基础
- 厨房地砖上墙施工方案
- 2024年XX中学七年级书香伴我成长活动计划
- 早产儿保健管理
- 评标专家及评标员管理办法
- aecopd护理查房课件
- TCECS 720-2020 钢板桩支护技术规程
- 中考作文备考:“此时无声胜有声”(附写作指导与佳作示例)
- MEMS键合工艺简介
- 房地产项目开发成本一览表
- 地下水环境监测井施工设计方案
- 危险货物道路运输车辆档案
- 少年闰土薛法根教学实录
- 600MW凝汽式机组全厂原则性热力系统计算(DOC)
评论
0/150
提交评论