




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
义务教育阶段数学课程标准
(2011版)解读义务教育阶段数学课程标准
(2011版)解读1四个主题:因“材”施教教无定“法”他山之石,可以攻玉信心是学习的基石6:38下午
2四个关键:学什么?怎么学?如何监控?如何评价?四个主题:1:16下午2四个关键:《数学课程标准》(2011版)是以(实验稿)为蓝本经过修改而成的。与之相比,2011版从基本理念、课程目标、课程内容到实施建议都更加准确、规范、明了和全面。6:38下午
3《数学课程标准》(2011版)1:16下午3一、关于总体框架结构的变化总体框架基本没变,都是四个部分。实验稿:前言、课程目标、内容标准和课程实施建议。2011版:把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路两个部分,改为课程性质、课程基本理念和课程设计思路三部分,增加了课程性质。
6:38下午
4一、关于总体框架结构的变化总体框架基本没变,都是四个部分。二、关于数学观的变化实验稿:(1)数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
(2)数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
6:38下午
5二、关于数学观的变化实验稿:1:16下午56:38下午
6
(3)数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
1:16下午6(3)数学是人们生活、劳动和学习必不可2011版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
6:38下午
72011版:1:16下午72011版把实验稿的第一、二、三句话进行了浓缩、提炼,表达更精准、确切。增加了一句话,说明了数学的地位及作用。6:38下午
82011版把实验稿的第一、二、三句话进行了浓缩、提炼,表达更三、“基本理念”的表述有所变化原文:数学课程——数学——数学学习——数学教学——评价——信息技术现文:数学课程——课程内容——教学活动——学习评价——信息技术变化:在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
6:38下午
9三、“基本理念”的表述有所变化原文:数学课程——数学——数学“数学课程”原文:“……使数学教育面向全体学生,实现:人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”。现文:“……数学课程应面向全体学生,适应学生个性发展需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
比较:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)6:38下午
10“数学课程”原文:“……使数学教育面向全体学生,实现:人人学“课程内容”原文:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,……现文:课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好:过程与结果,直观与抽象的关系,直接经验与间接经验的关系。比较:充分利用现实背景材料,发展学生的数学素养6:38下午
11“课程内容”原文:学生的数学学习内容应当是现实的、有意义的、“教学活动”关于学习途径原文:……主动地进行观察、实验、猜测、验证、推理与交流等数学活动。现文:学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。6:38下午
12“教学活动”关于学习途径1:16下午12
关于教师的主导作用原文:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。现文:注重启发式和因材施教,……处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生…比较:发挥教师的主导作用并不排斥教师讲授知识6:38下午
13关于教师的主导作用1:16下午13“学习评价”原文:要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度……现文:要关注学生学习的结果,也要关注他们学习的过程;要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感与态度,……比较:过程与结果、学习水平与情感态度两者同等重要6:38下午
14“学习评价”原文:要关注学生学习的结果,更要关注他们学习的过“信息技术”原文:应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,……现文:要注意信息技术与课程内容的整合,注重实效。……改进教与学的方式,……比较:既要开发运用,又要考虑教学内容的需要,以及培养目标的实现6:38下午
15“信息技术”原文:应重视运用现代信息技术,特别要充分考虑计算四、“双基”变“四基”
原文:“双基”:基础知识、基本技能现文:“四基”:基础知识、基本技能、基本思想、基本活动经验掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验6:38下午
16四、“双基”变“四基”原文:“双基”:基础知识、基本技能五、关于课程设计思路的修改学段划分保持不变;对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;对四个学习领域的名称作适当调整;
对学习内容中的若干关键词作适当调整对其意义作更明确的阐释6:38下午
17五、关于课程设计思路的修改学段划分保持不变;1:17下午六、四个领域名称的变化
原文:数与代数、空间与图形、统计与概率、实践与综合应用现文:数与代数、图形与几何、统计与概率、综合与实践
6:38下午
18六、四个领域名称的变化原文:数与代数、空间与图形、统计与概七、主要的关键词的变化
原文:数感、符号感、空间观念、统计观念、应用意识、推理能力现文:
数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。
6:38下午
19七、主要的关键词的变化原文:1:17下午19符号感为何改为符号意识原文:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。现文:“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。6:38下午
20符号感为何改为符号意识原文:“符号感”主要表现在:能从具体情比较1:
“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以用“意识”更合适。6:38下午
21比较1:1:17下午21比较2:
直观与推理是“图形与几何”学习中的两个重要方面。几何直观是新增的核心概念。
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。6:38下午
22比较2:1:17下午22比较3:
将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。
“数据分析观念”更加突出了统计与概率独特的思维方法,体会数据中蕴涵着的信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。6:38下午
23比较3:1:17下午23比较4:
都强调了“获得数学猜想——证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。合情推理用于探索思路,发现结论;演绎推理用于证明结论。在解决问题的过程中,两种推理功能不同,相辅相成。6:38下午
24比较4:1:17下午24比较5:
数学里边还有一个非常重要的是,数学模型(用数学的语言表述概念、描述规律,既简洁又准确,这就是人们通常所说的数学模型。)《标准》说明了模型思想的价值,数学模型是沟通数学与现实世界的桥梁。数学得到的一些结果要应用于现实世界,是通过数学模型。6:38下午
25比较5:1:17下午25八、关于课程目标的修改在总体目标中突出了“培养学生创新意识和实践能力”的改革方向和目标价值取向。
课程目标提法上的一些变化:明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。提出了培养学生发现问题、提出问题、分析问题和解决问题能力。(四个“问题”)目标具体从“知识技能”、“数学思考”、“问题解决”、“情感态度”四个方面阐述。
6:38下午
26八、关于课程目标的修改在总体目标中突出了“培养学生创新意识和九、关于内容标准的修改在三个学段中,对“数与代数”,“图形与几何”“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,对某些课程目标的表述进行了修改.各领域知识点的数量有增有减,但整体数量上没有明显变化.6:38下午
27九、关于内容标准的修改在三个学段中,对“数与代数”,“图形1.数与代数第三学段增加的内容“掌握合并同类项和去括号的法则”“最简分式”的概念“能解简单的三元一次方程组”,但作为选学内容,不作考试要求“能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等”、“了解一元二次方程的根与系数的关系”
(不要求应用这个关系解决其他问题)“会利用待定系数法确定一次函数的解析表达式”“知道给定不共线三点的坐标可以确定一个二次函数”,但作为选学内容,不作考试要求.6:38下午
281.数与代数第三学段增加的内容1:17下午28删除的内容“能对含有较大数字的信息作出合理的解释和推断”.“有效数字”的概念.“能解释一些简单代数式的实际背景或几何意义”.“能根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”.“能确定简单的整式、分式中的函数的自变量范围”.将“能根据一次函数的图像求二元一次方程组的近似解”,改为“体会一次函数与二元一次方程、二元一次方程组的关系”
6:38下午
29删除的内容1:17下午29使一些目标的表述更加准确和完整.例如将“会求有理数的相反数与绝对值(绝对值符号内不含字母)”,改为“掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)”.6:38下午
30使一些目标的表述更加准确和完整.1:17下午302.图形与几何第三学段内容结构调整将“图形的认识”与“图形与证明”两部分,合并为“图形的性质”.这样,由四部分变为“图形的性质”、“图形的变化”、“图形与坐标”三部分.
这种变化有利于学生在探索发现、操作确认、推理证明的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.6:38下午
312.图形与几何第三学段内容结构调整1:17下午31图形的性质明确了9条基本事实.增加了“两点确定一条直线”、“两点之间线段最短”、“一点有且只有一条直线与这条直线垂直”、“直线外一点有且只有一条直线与这条直线平行”、“两条直线被一组平行线所截,所得的对应线段成比例”;将“两直线平行,同位角相等”,不再作为基本事实,而作为定理加以证明,证明过程作为选学内容,不作考试要求.
增加了下列定理的证明:相似三角形的判定定理、垂径定理,圆周角定理及推论,切线长定理.但是,不要求运用这些定理证明其他命题.6:38下午
32图形的性质1:17下午32删去了有关梯形的内容.“尺规作图”中增加了“过一点作已知直线的垂线”、“作三角形的外接圆、内切圆”、“作圆的内接正方形和正六边形”.要求了解作图的道理,不要求写出作法.使一些目标的表述更加准确和完整.例如将“通过丰富的实例,进一步认识点、线、面”改为“通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等”
6:38下午
33删去了有关梯形的内容.1:17下午33图形的变化将“图形的认识”里的“视图与投影”内容移入到此部分,改名为“图形的投影”,突出了图形的变化,强调了图形的运动是研究图形性质的一种有效方法.图形的平移、图形的旋转、图形的轴对称的一些要求更加明确,表述更加清晰.降低了对图形的投影的要求,删除了“视点”、“视角”、“盲区”、“阴影”等内容.6:38下午
34图形的变化1:17下午343.统计与概率
对统计与概率内容结构做了较大调整,使三个学段内容学习的层次性方面更加明确.强调培养数据分析观念,与学生的现实生活联系得更加紧密.强调了对“随机”的体会.
比如,增加了“通过案例了解简单随机抽样”、“通过表格、折线图等,了解随机现象的变化趋势”.6:38下午
353.统计与概率对统计与概率内容结构做了较大调整4.综合与实践统一了三个学段的名称,进一步明确了其目地和内涵。“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。教学中应强调问题情境与学生所学的知识和生活经验相结合,鼓励学生独立思考、合作交流,自主设计解决问题的思路。经历发现和提出问题、分析和解决问题的全过程,感悟数学与生活实际、数学与其他学科、数学各部分内容之间的联系,加深对所学数学内容的理解。6:38下午
364.综合与实践统一了三个学段的名称,进一步明确了其目地和内涵进一步明确了三个学段的目标要求一方面明确了综合与实践的内涵和特征,另一方面在具体要求中突出了不同学段的特点。例如,第一学段,以实践活动为主要形式;第二学段,学生将在教师的指导下,经历有目的、有设计、有步骤、有合作的综合与实践活动;第三学段,学生将在教师的引导下,独立思考、合作研究,设计解决具体问题的方案,并加以实施,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。6:38下午
37进一步明确了三个学段的目标要求1:17下午37十、关于实施建议的修改实施建议完全重写了。过去关于编写建议、教学建议、评价建议是按学段写。现在是按基本的思想写,紧扣基本理念来写。
关于教学的建议6:38下午
38十、关于实施建议的修改实施建议完全重写了。过去关于编写建议、1.数学教学活动要注重课程目标的整体实现为使每个学生都受到良好的数学教育,数学教学要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。在日常的教学活动中,教师应努力挖掘教学内容中可能蕴涵的、与上述四个方面目标有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目标。
6:38下午
391.数学教学活动要注重课程目标的整体实现1:17下午32.重视学生在学习活动中的主体地位有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。(1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得到发展。6:38下午
402.重视学生在学习活动中的主体地位有效的数学教学活动是教师(2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。教师的“组织”作用主要体现在:确定合理的教学目标,设计一个好的教学方案;选择适当的教学方式,形成有效的学习活动。教师的“引导”作用主要体现在:引导学生积极思考、求知求真,激发学生的好奇心;恰当归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;关注学生的差异。6:38下午
41(2)教师应成为学生学习活动的组织者、引导者、合作者,为学生教师与学生的“合作”主要体现在:教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。6:38下午
42教师与学生的“合作”主要体现在:1:18下午42(3)处理好学生主体地位和教师主导作用的关系。好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。6:38下午
43(3)处理好学生主体地位和教师主导作用的关系。好的教学活动,3.注重学生对基础知识、基本技能的理解和掌握数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。
6:38下午
443.注重学生对基础知识、基本技能的理解和掌握数学知识的教学4.感悟数学思想,积累数学活动经验
数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。6:38下午
454.感悟数学思想,积累数学活动经验数学思想5.关注学生情感态度的发展根据课程目标,要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数学教学过程之中。
6:38下午
465.关注学生情感态度的发展1:18下午466.合理把握“综合与实践”的实施“综合与实践”的实施是以问题为载体、以学生自主参与为主的学习活动。它有别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授。它是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动。积累数学活动经验、培养学生应用意识和创新意识是数学课程的重要目标,应贯穿整个数学课程之中。“综合与实践”是实现这些目标的重要和有效的载体。“综合与实践”的教学,重在实践、重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。6:38下午
476.合理把握“综合与实践”的实施“综合与实践”的实施是以问7.教学中应当注意的几个关系(1)“预设”与“生成”的关系(2)面向全体学生与关注学生个体差异的关系(3)合情推理与演绎推理的关系(4)使用现代信息技术与教学手段多样化的关系6:38下午
487.教学中应当注意的几个关系1:18下午48十一、结语课标的修订和完善是一个长期的过程,因此在教学过程中教师既要领会课标的基本理念、目标等,同时又要理性地看待存在的问题,要多思考、多实践。课标中的目标和具体内容都是以学段的形式进行阐述,而我们的教学和评价都是以学期为单位,因此在以教材的要求为前提下,还要注意把握住学段目标,注意在教学中把握“度”的问题。6:38下午
49十一、结语课标的修订和完善是一个长期的过程,因此在教学过程中THEENDTHEEND50义务教育阶段数学课程标准
(2011版)解读义务教育阶段数学课程标准
(2011版)解读51四个主题:因“材”施教教无定“法”他山之石,可以攻玉信心是学习的基石6:38下午
52四个关键:学什么?怎么学?如何监控?如何评价?四个主题:1:16下午2四个关键:《数学课程标准》(2011版)是以(实验稿)为蓝本经过修改而成的。与之相比,2011版从基本理念、课程目标、课程内容到实施建议都更加准确、规范、明了和全面。6:38下午
53《数学课程标准》(2011版)1:16下午3一、关于总体框架结构的变化总体框架基本没变,都是四个部分。实验稿:前言、课程目标、内容标准和课程实施建议。2011版:把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路两个部分,改为课程性质、课程基本理念和课程设计思路三部分,增加了课程性质。
6:38下午
54一、关于总体框架结构的变化总体框架基本没变,都是四个部分。二、关于数学观的变化实验稿:(1)数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
(2)数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
6:38下午
55二、关于数学观的变化实验稿:1:16下午56:38下午
56
(3)数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
1:16下午6(3)数学是人们生活、劳动和学习必不可2011版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
6:38下午
572011版:1:16下午72011版把实验稿的第一、二、三句话进行了浓缩、提炼,表达更精准、确切。增加了一句话,说明了数学的地位及作用。6:38下午
582011版把实验稿的第一、二、三句话进行了浓缩、提炼,表达更三、“基本理念”的表述有所变化原文:数学课程——数学——数学学习——数学教学——评价——信息技术现文:数学课程——课程内容——教学活动——学习评价——信息技术变化:在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
6:38下午
59三、“基本理念”的表述有所变化原文:数学课程——数学——数学“数学课程”原文:“……使数学教育面向全体学生,实现:人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”。现文:“……数学课程应面向全体学生,适应学生个性发展需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
比较:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)6:38下午
60“数学课程”原文:“……使数学教育面向全体学生,实现:人人学“课程内容”原文:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,……现文:课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好:过程与结果,直观与抽象的关系,直接经验与间接经验的关系。比较:充分利用现实背景材料,发展学生的数学素养6:38下午
61“课程内容”原文:学生的数学学习内容应当是现实的、有意义的、“教学活动”关于学习途径原文:……主动地进行观察、实验、猜测、验证、推理与交流等数学活动。现文:学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。6:38下午
62“教学活动”关于学习途径1:16下午12
关于教师的主导作用原文:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。现文:注重启发式和因材施教,……处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生…比较:发挥教师的主导作用并不排斥教师讲授知识6:38下午
63关于教师的主导作用1:16下午13“学习评价”原文:要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度……现文:要关注学生学习的结果,也要关注他们学习的过程;要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感与态度,……比较:过程与结果、学习水平与情感态度两者同等重要6:38下午
64“学习评价”原文:要关注学生学习的结果,更要关注他们学习的过“信息技术”原文:应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,……现文:要注意信息技术与课程内容的整合,注重实效。……改进教与学的方式,……比较:既要开发运用,又要考虑教学内容的需要,以及培养目标的实现6:38下午
65“信息技术”原文:应重视运用现代信息技术,特别要充分考虑计算四、“双基”变“四基”
原文:“双基”:基础知识、基本技能现文:“四基”:基础知识、基本技能、基本思想、基本活动经验掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验6:38下午
66四、“双基”变“四基”原文:“双基”:基础知识、基本技能五、关于课程设计思路的修改学段划分保持不变;对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;对四个学习领域的名称作适当调整;
对学习内容中的若干关键词作适当调整对其意义作更明确的阐释6:38下午
67五、关于课程设计思路的修改学段划分保持不变;1:17下午六、四个领域名称的变化
原文:数与代数、空间与图形、统计与概率、实践与综合应用现文:数与代数、图形与几何、统计与概率、综合与实践
6:38下午
68六、四个领域名称的变化原文:数与代数、空间与图形、统计与概七、主要的关键词的变化
原文:数感、符号感、空间观念、统计观念、应用意识、推理能力现文:
数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。
6:38下午
69七、主要的关键词的变化原文:1:17下午19符号感为何改为符号意识原文:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。现文:“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。6:38下午
70符号感为何改为符号意识原文:“符号感”主要表现在:能从具体情比较1:
“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以用“意识”更合适。6:38下午
71比较1:1:17下午21比较2:
直观与推理是“图形与几何”学习中的两个重要方面。几何直观是新增的核心概念。
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。6:38下午
72比较2:1:17下午22比较3:
将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。
“数据分析观念”更加突出了统计与概率独特的思维方法,体会数据中蕴涵着的信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。6:38下午
73比较3:1:17下午23比较4:
都强调了“获得数学猜想——证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。合情推理用于探索思路,发现结论;演绎推理用于证明结论。在解决问题的过程中,两种推理功能不同,相辅相成。6:38下午
74比较4:1:17下午24比较5:
数学里边还有一个非常重要的是,数学模型(用数学的语言表述概念、描述规律,既简洁又准确,这就是人们通常所说的数学模型。)《标准》说明了模型思想的价值,数学模型是沟通数学与现实世界的桥梁。数学得到的一些结果要应用于现实世界,是通过数学模型。6:38下午
75比较5:1:17下午25八、关于课程目标的修改在总体目标中突出了“培养学生创新意识和实践能力”的改革方向和目标价值取向。
课程目标提法上的一些变化:明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。提出了培养学生发现问题、提出问题、分析问题和解决问题能力。(四个“问题”)目标具体从“知识技能”、“数学思考”、“问题解决”、“情感态度”四个方面阐述。
6:38下午
76八、关于课程目标的修改在总体目标中突出了“培养学生创新意识和九、关于内容标准的修改在三个学段中,对“数与代数”,“图形与几何”“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,对某些课程目标的表述进行了修改.各领域知识点的数量有增有减,但整体数量上没有明显变化.6:38下午
77九、关于内容标准的修改在三个学段中,对“数与代数”,“图形1.数与代数第三学段增加的内容“掌握合并同类项和去括号的法则”“最简分式”的概念“能解简单的三元一次方程组”,但作为选学内容,不作考试要求“能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等”、“了解一元二次方程的根与系数的关系”
(不要求应用这个关系解决其他问题)“会利用待定系数法确定一次函数的解析表达式”“知道给定不共线三点的坐标可以确定一个二次函数”,但作为选学内容,不作考试要求.6:38下午
781.数与代数第三学段增加的内容1:17下午28删除的内容“能对含有较大数字的信息作出合理的解释和推断”.“有效数字”的概念.“能解释一些简单代数式的实际背景或几何意义”.“能根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”.“能确定简单的整式、分式中的函数的自变量范围”.将“能根据一次函数的图像求二元一次方程组的近似解”,改为“体会一次函数与二元一次方程、二元一次方程组的关系”
6:38下午
79删除的内容1:17下午29使一些目标的表述更加准确和完整.例如将“会求有理数的相反数与绝对值(绝对值符号内不含字母)”,改为“掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)”.6:38下午
80使一些目标的表述更加准确和完整.1:17下午302.图形与几何第三学段内容结构调整将“图形的认识”与“图形与证明”两部分,合并为“图形的性质”.这样,由四部分变为“图形的性质”、“图形的变化”、“图形与坐标”三部分.
这种变化有利于学生在探索发现、操作确认、推理证明的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.6:38下午
812.图形与几何第三学段内容结构调整1:17下午31图形的性质明确了9条基本事实.增加了“两点确定一条直线”、“两点之间线段最短”、“一点有且只有一条直线与这条直线垂直”、“直线外一点有且只有一条直线与这条直线平行”、“两条直线被一组平行线所截,所得的对应线段成比例”;将“两直线平行,同位角相等”,不再作为基本事实,而作为定理加以证明,证明过程作为选学内容,不作考试要求.
增加了下列定理的证明:相似三角形的判定定理、垂径定理,圆周角定理及推论,切线长定理.但是,不要求运用这些定理证明其他命题.6:38下午
82图形的性质1:17下午32删去了有关梯形的内容.“尺规作图”中增加了“过一点作已知直线的垂线”、“作三角形的外接圆、内切圆”、“作圆的内接正方形和正六边形”.要求了解作图的道理,不要求写出作法.使一些目标的表述更加准确和完整.例如将“通过丰富的实例,进一步认识点、线、面”改为“通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等”
6:38下午
83删去了有关梯形的内容.1:17下午33图形的变化将“图形的认识”里的“视图与投影”内容移入到此部分,改名为“图形的投影”,突出了图形的变化,强调了图形的运动是研究图形性质的一种有效方法.图形的平移、图形的旋转、图形的轴对称的一些要求更加明确,表述更加清晰.降低了对图形的投影的要求,删除了“视点”、“视角”、“盲区”、“阴影”等内容.6:38下午
84图形的变化1:17下午343.统计与概率
对统计与概率内容结构做了较大调整,使三个学段内容学习的层次性方面更加明确.强调培养数据分析观念,与学生的现实生活联系得更加紧密.强调了对“随机”的体会.
比如,增加了“通过案例了解简单随机抽样”、“通过表格、折线图等,了解随机现象的变化趋势”.6:38下午
853.统计与概率对统计与概率内容结构做了较大调整4.综合与实践统一了三个学段的名称,进一步明确了其目地和内涵。“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。教学中应强调问题情境与学生所学的知识和生活经验相结合,鼓励学生独立思考、合作交流,自主设计解决问题的思路。经历发现和提出问题、分析和解决问题的全过程,感悟数学与生活实际、数学与其他学科、数学各部分内容之间的联系,加深对所学数学内容的理解。6:38下午
864.综合与实践统一了三个学段的名称,进一步明确了其目地和内涵进一步明确了三个学段的目标要求一方面明确了综合与实践的内涵和特征,另一方面在具体要求中突出了不同学段的特点。例如,第一学段,以实践活动为主要形式;第二学段,学生将在教师的指导下,经历有目的、有设计、有步骤、有合作的综合与实践活动;第三学段,学生将在教师的引导下,独立思考、合作研究,设计解决具体问题的方案,并加以实施,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。6:38下午
87进一步明确了三个学段的目标要求1:17下午37十、关于实施建议的修改实施建议完全重写了。过去关于编写建议、教学建议、评价建议是按学段写。现在是按基本的思想写,紧扣基本理念来写。
关于教学的建议6:38下午
88十、关于实施建议的修改实施建议完全重写了。过去关于编写建议、1.数学教学活动要注重课程目标的整体实现为使每个学生都受到良好的数学教育,数学教学要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。在日常的教学活动中,教师应努力挖掘教学内容中可能蕴涵的、与上述四个方面目标有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目标。
6:38下午
891.数学教学活动要注重课程目标的整体实现1:17下午32.重视学生在学习活动中的主体地位有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。(1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备自主安全管理制度
- 设施维护保养管理制度
- 设计单位勘察管理制度
- 评估公司行政管理制度
- 诊所前台登记管理制度
- 诊所药品采购管理制度
- 财务部门进出管理制度
- 财政奖励项目管理制度
- 货物托运窗口管理制度
- 货车装货排队管理制度
- 2025年国能榆林化工有限公司招聘笔试参考题库含答案解析
- 2025年学校意识形态工作总结范文(2篇)
- 2025年职业技能(工业废水处理工)专业技术及理论知识考试题及答案
- 2021年高级经济师(人力资源)考试真题及参考答案
- 烟酒店创业计划书范文
- 旅游目的地管理(双语)知到智慧树章节测试课后答案2024年秋海南热带海洋学院
- 上海市市辖区(2024年-2025年小学六年级语文)统编版小升初真题(下学期)试卷及答案
- 《报检与报关实务(李贺)-上海财经大学出版社》课后答案
- 《建材产品追溯中国ISO标准砂》
- 2015年江苏省南通市中考真题语文试题(解析版)
- 大学物业服务月考核评价评分表
评论
0/150
提交评论