




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菁优网 ©2010-2014菁优网 临沂十二中一元一次不等式专题练习一
临沂十二中一元一次不等式专题练习一一.解答题(共30小题)1.(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?2.(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.3.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号AB成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)4.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?5.(2013•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?6.(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?7.(2013•葫芦岛)定义新运算:对于任意实数a,b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算,例如:3⊕2=3﹣2×2=﹣1.若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.8.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?9.(2013•巴中)解不等式:,并把解集表示在数轴上.10.(2012•舟山)解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.11.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.12.(2012•连云港)解不等式x﹣1>2x,并把解集在数轴上表示出来.13.(2012•葫芦岛)如图,折线AC﹣BC是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.(1)求这条公路的长;(2)设甲乙出发的时间为t小时,求甲没有超过乙时t的取值范围.14.(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?15.(2012•呼和浩特)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.16.(2011•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?17.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.18.(2011•苏州)解不等式:3﹣2(x﹣1)<1.19.(2011•衢州)解不等式,并把解在数轴上表示出来.20.(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(2010•湘西州)解不等式:3x﹣6≥0,并将解集表示在数轴上.22.(2010•湘潭)解不等式:2(x﹣1)<x+1,并求它的非负整数解.23.(2010•黔东南州)凯里市某企业计划2010年生产一种新产品,下面是企业有关科室提供的信息:人力科:2010年生产新产品的一线工人不多于600人.每人每年工时按2200小时计划.销售科:观测2010年该产品平均每件需80小时,每件需要装4个某种主要部件.供应科:2009年底库存某种主要部件8000个,另外在2010年内能采购到这种主要部件40000个.根据上述信息,2010年生产量至少是多少件?为减少积压可至多调出多少工人用于开发其它新产品?24.(2009•淄博)解不等式:5x﹣12≤2(4x﹣3)25.(2009•浙江)据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度.(1)预计2012年底义乌市户籍人口约多少人?(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩?26.(2009•漳州)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?27.(2009•威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?28.(2009•绵阳)李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.29.(2009•荆州)解不等式:≥x﹣230.(2009•贵港)蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?
临沂十二中一元一次不等式专题练习一参考答案与试题解析一.解答题(共30小题)1.(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?考点:二元一次方程组的应用;一元一次不等式的应用.专题:压轴题.分析:(1)首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可;(2)设大寝室a间,则小寝室(80﹣a)间,由题意可得a≤80,再根据关键语句“高一新生中有不少于630名女生将入住寝室80间”可得不等式8a+6(80﹣a)≥630,解不等式组即可.解答:解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:,答:该校的大寝室每间住8人,小寝室每间住6人;(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:,解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.点评:此题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程和不等式.2.(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用.专题:压轴题.分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z<∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.3.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号AB成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)考点:一元一次不等式的应用.专题:应用题;压轴题;方案型.分析:(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100﹣x)台的情况下,可列不等式22400≤200x+240(100﹣x)≤22500,解不等式,取其整数值即可求解;(2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100﹣x)=6000﹣10x,利用函数的自变量取值范围和其单调性即可求得函数的最值;(3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小.解答:解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.点评:考查学生解决实际问题的能力,试题的特色是在要求学生能读懂题意,并且会用函数知识去解题,以及会讨论函数的最大值.要结合自变量的范围求函数的最大值,并要把(m﹣10)正负性考虑清楚,分情况讨论问题.4.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?考点:一元一次不等式的应用.分析:设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.解答:解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.点评:本题考查了一元一次不等式的应用,难度一般,解答本题的关键是表示出胜场得分和输场得分并列出不等式.5.(2013•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?考点:二元一次方程组的应用;一元一次不等式的应用.专题:压轴题.分析:(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.解答:解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得,解得:.答:购买A型学习用品400件,B型学习用品600件;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得20(1000﹣a)+30a≤28000,解得:a≤800答:最多购买B型学习用品800件.点评:本题考查了列二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.6.(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?考点:二元一次方程组的应用;一元一次不等式的应用.专题:图表型.分析:(1)根据“用水20吨,交水费49元”可得方程20(m+0.80)=49,“用水25吨,交水费65.4元”可得方程49+(25﹣20)(n+0.80)=65.4,联立两个方程即可得到m、n的值;(2)首先计算出用水量的范围,用水量为30吨花费为81.8元,2%×8190=163.8,小张家6月份的用水量超过30吨,再设小张家6月份的用水x吨,由题意可得不等式81.8+(2×1.65+0.80)(x﹣30)≤163.8,再解不等式即可.解答:解:(1)由题意得:,解得;(2)由(1)得m=1.65,n=2.48当用水量为30吨时,水费为:49+(30﹣20)×(2.48+0.80)=81.8(元),2%×8190=163.8(元),∵163.8>81.8,∴小张家6月份的用水量超过30吨.可设小张家6月份的用水x吨,由题意得81.8+(2×1.65+0.80)(x﹣30)≤163.8,解得x≤50,答:小张家6月份最多能用水50吨.点评:此题主要考查了二元一次方程组的应用,以及一元一次不等式的应用,关键是正确理解图中所表示的意义,掌握水的收费标准.7.(2013•葫芦岛)定义新运算:对于任意实数a,b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算,例如:3⊕2=3﹣2×2=﹣1.若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:新定义.分析:根据题目所给的运算方式,列出不等式,解不等式.解答:解:由题意得,3⊕x=3﹣2x<1,解得:x>1.在数轴上表示为:.点评:本题考查了解一元一次方程,属于基础题,理解新定义法则是解题的关键.8.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过6000元,可得出不等式,解出即可.解答:解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个.点评:本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.9.(2013•巴中)解不等式:,并把解集表示在数轴上.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:压轴题.分析:首先两边同时乘以6去分母,再利用乘法分配律去括号,移项、合并同类项,最后把x的系数化为1即可.解答:解:去分母得:2(2x﹣1)﹣(9x+2)≤6,去括号得:4x﹣2﹣9x﹣2≤6,移项得:4x﹣9x≤6+2+2,合并同类项得:﹣5x≤10,把x的系数化为1得:x≥﹣2.点评:此题主要考查了解一元一次不等式,关键是注意去分母时,不要漏乘没有分母的项.10.(2012•舟山)解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解.解答:解:去括号得,2x﹣2﹣3<1,移项、合并得,2x<6,系数化为1得,x<3.在数轴上表示如下:点评:本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.11.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案;(2)首先计算出2012年共有的存款数,再由题意可得从2013年1月份开始,每月存款为(15+t)元;从2013年1月到2015年6月共有30个月,共存款30(15+t),再加上2012年共有的存款数存款总数超过1000元,由此可得不等式230+30(15+t)>1000,解出不等式,取符合条件的最小的整数值即可.解答:解:(1)设李明每月存款x元,储蓄盒内原有存款y元,依题意得,,解得,答:李明2012年1月份存款前,储蓄盒内已有存款50元;(2)由(1)得,李明2012年共有存款12×15+50=230元,2013年1月份后每月存入(15+t)元,2013年1月到2015年6月共有30个月,依題意得,230+30(15+t)>1000,解得t>10,因为t为整数,所以t的最小值为11.答:t的最小值为11.点评:此题主要考查了二元一次方程组以及一元一次不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,再设出未知数列出方程组与不等式.12.(2012•连云港)解不等式x﹣1>2x,并把解集在数轴上表示出来.考点:解一元一次不等式;不等式的性质;在数轴上表示不等式的解集.专题:计算题.分析:移项后合并同类项得出﹣x>1,不等式的两边都乘以﹣2即可得出答案.解答:解:移项得:x﹣2x>1,合并同类项得:﹣x>1,不等式的两边都乘以﹣2得:x<﹣2.在数轴上表示不等式的解集为:.点评:本题考查了不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的应用,主要考查学生能否正确解一元一次不等式,注意:不等式的两边都乘以﹣2时,不等式的符号要改变.13.(2012•葫芦岛)如图,折线AC﹣BC是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.(1)求这条公路的长;(2)设甲乙出发的时间为t小时,求甲没有超过乙时t的取值范围.考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)设这条公路的长为xkm,则BC=(x﹣8)km,有题意可得等量关系:乙从C地到B地所用的时间﹣甲从A地沿这条公路到B地所用的时间=6分钟,根据等量关系列出方程即可;(2)根据题意得出不等关系:甲t小时的路程≤乙t小时的路程+8km,根据不等关系列出不等式即可.解答:解:(1)设这条公路的长为xkm,由题意得,,解这个方程得,x=12.答:这条公路的长12km.(2)由题意得,40t≤10t+8,解这个不等式得:.答:当时,甲没有超过乙.点评:此题主要考查了一元一次方程的应用,以及一元一次不等式的应用,关键是弄懂题意,找出题目中的等量关系或不等关系,列出方程或不等式.14.(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?考点:一元一次不等式的应用;一元一次方程的应用.专题:压轴题.分析:(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000﹣3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可;(3)假设购买丙种树y棵,则甲、乙两种树共(1000﹣y)棵,根据题意得:200(1000﹣y)+300y≤210000+10120,求出即可.解答:解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,则乙种树每棵200元,丙种树每棵×200=300(元);(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000,解得x=300∴2x=600,1000﹣3x=100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵;(3)设购买丙种树y棵,则甲、乙两种树共(1000﹣y)棵,根据题意得:200(1000﹣y)+300y≤210000+10120,解得:y≤201.2,∵y为正整数,∴y最大取201.答:丙种树最多可以购买201棵.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化,购买总棵树不变的情况下得出不等式方程.15.(2012•呼和浩特)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(2011•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?考点:一元一次不等式的应用;一元一次方程的应用.专题:经济问题.分析:(1)设单价比中的每一份为x,表示出其单价,根据单价和可求得x,进而求得相应单价即可;(2)关系式为:乒乓球拍的数量≤15,总价≤3000,把相关数值代入求得合适的整数解的个数即可.解答:解:(1)设篮球的单价为8x,则羽毛球拍的单价为3x,乒乓球拍的单价为2x.8x+3x+2x=130,解得x=10,∴8x=80;3x=30;2x=20,答:篮球的单价为80元,羽毛球拍的单价为30元,乒乓球拍的单价为20元;(2)设篮球的数量为y,则羽毛球拍的个数为4y,乒乓球拍的数量为80﹣5y.,解得13≤y≤14,∴y=13或14,答:有2种购买方案,篮球、羽毛球拍和乒乓球拍的数量分别为:13,52,15或14,56,10.点评:考查一元一次方程及二元一次不等式组的应用;得到所需关系式是解决本题的关键.17.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.考点:一元一次不等式的应用;一元一次方程的应用.专题:应用题;压轴题.分析:(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克,列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,列出不等式求解即可.解答:解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克,则所含蛋白质质量为4y克,所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%,∴y≥40,∴﹣5y≤﹣200,∴380﹣5y≤380﹣200,即380﹣5y≤180,∴所含碳水化合物质量的最大值为180克.点评:本题由课本例题改编而成(原题为浙教版七年级下P96例题),这使学生对试题有“亲切感”,而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点,给出两个量的和的范围,求其中一个量的最值,隐含着函数最值思想.本题切入点较多,方法灵活,解题方式多样化,可用不等式解题,也可用极端原理求解,不同的解答反映出思维的不同层次.18.(2011•苏州)解不等式:3﹣2(x﹣1)<1.考点:解一元一次不等式.分析:首先去括号,然后移项合并同类项,系数化为1,即可求解.解答:解:3﹣2x+2<1,得:﹣2x<﹣4,∴x>2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.(2011•衢州)解不等式,并把解在数轴上表示出来.考点:解一元一次不等式;不等式的性质;在数轴上表示不等式的解集.专题:计算题;数形结合.分析:根据不等式的性质得到3(x﹣1)≤1+x,推出2x≤4,即可求出不等式的解集.解答:解:去分母,得3(x﹣1)≤1+x,整理,得2x≤4,∴x≤2.在数轴上表示为:.点评:本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.20.(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.考点:一元一次不等式的整数解.专题:计算题;压轴题.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式2(x﹣2)≤6﹣3x,解得,x≤2,∴正整数解为1和2.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.21.(2010•湘西州)解不等式:3x﹣6≥0,并将解集表示在数轴上.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:利用不等式的基本性质,将两边不等式同时加上6再除以3,不等号的方向不变.注意在数轴上表示时有等号取实心点,无等号取空心点.解答:解:由3x﹣6≥0得3x≥6(2分)于是x≥2(4分)数轴表示为(5分)点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.(2010•湘潭)解不等式:2(x﹣1)<x+1,并求它的非负整数解.考点:一元一次不等式的整数解.分析:先求出不等式的解集,再据此求出不等式的非负整数解.解答:解:去括号得,2x﹣2<x+1,移项得,2x﹣x<1+2,合并同类项得,x<3,故它的非负整数解为0,1,2.点评:正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(2010•黔东南州)凯里市某企业计划2010年生产一种新产品,下面是企业有关科室提供的信息:人力科:2010年生产新产品的一线工人不多于600人.每人每年工时按2200小时计划.销售科:观测2010年该产品平均每件需80小时,每件需要装4个某种主要部件.供应科:2009年底库存某种主要部件8000个,另外在2010年内能采购到这种主要部件40000个.根据上述信息,2010年生产量至少是多少件?为减少积压可至多调出多少工人用于开发其它新产品?考点:一元一次不等式的应用.专题:应用题;压轴题.分析:设2010年生产x件,根据2010年生产新产品的一线工人不多于600人.每人每年工时按2200小时计划和观测2010年该产品平均每件需80小时,每件需要装4个某种主要部件,可列出不等式求解,然后根据至少多少产品可得出为减少积压可至多调出多少工人用于开发其它新产品.解答:解:设2010年生产x件,由题意得80x≤600×2200,解得x≤165004x≤8000+40000,解得x≤12000∴x≤12000即2010年生产量至多是12000件.12000×80÷2200≈437600﹣437=163即为减少积压可至多调出163工人用于开发其他新产品.点评:本题考查理解题意的能力,关键是根据供应和人力得出不等式,求出解,进而求出为减少积压可至多调出多少工人用于开发其它新产品.24.(2009•淄博)解不等式:5x﹣12≤2(4x﹣3)考点:解一元一次不等式.专题:计算题.分析:根据一元一次不等式的解法先去括号得5x﹣12≤8x﹣6,后移项得﹣3x≤6,再化简(同除﹣3且改变不等号方向).解答:解:5x﹣12≤8x﹣6,(2分)﹣3x≤6,(4分)x≥﹣2.(6分)点评:本题考查一元一次不等式:一元一次不等式的解法先移项,再化简(同乘除).25.(2009•浙江)据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度.(1)预计2012年底义乌市户籍人口约多少人?(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩?考点:一元一次不等式的应用.分析:(1)根据:2004年底至2008年底户籍人口平均每两年约增加2%,可将2010年的户籍人口表示出来.(2)根据题意首先计算出2012年底义乌市户籍人口约多少人,根据2012年底义乌市人均耕地面积不低于2008年的人均耕地面积可建立不等式,解决问题.解答:解:(1)724000×(1+2%)2=753249.6≈753250(2)设平均每年总耕地面积增加x亩≥x≥2696.7≈2697答:2012年底义乌市户籍人口约753250人,平均每年耕地面积至少增加2697亩.点评:利用不等式解决实际问题与列方程解应用题相似,关键是找出题目中的已知量和未知量之间的关系,用代数式表示出2008年底户籍人数是解题的关键.26.(2009•漳州)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)等量关系为:甲消毒液总价钱+乙消毒液总价钱=780.(2)关系式为:甲消毒液总价钱+乙消毒液总价钱≤1200.解答:解:(1)设甲种消毒液购买x瓶,则乙种消毒液购买(100﹣x)瓶.依题意得:6x+9(100﹣x)=780.解得:x=40.∴100﹣x=100﹣40=60(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y瓶,则购买乙种消毒液2y瓶.依题意得:6y+9×2y≤1200.解得:y≤50.答:甲种消毒液最多再购买50瓶.点评:解决本题的关键是读懂题意,找到符合题意的等量关系和不等关系式:等量关系为:甲消毒液总价钱+乙消毒液总价钱=780.不等关系式为:甲消毒液总价钱+乙消毒液总价钱≤1200.27.(2009•威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论