版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm2.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A. B. C. D.3.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:4.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.5.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值46.如图,是矩形内的任意一点,连接、、、,得到,,,,设它们的面积分别是,,,,给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A.①② B.②③ C.③④ D.②④7.某商店以每件60元的价格购进一批货物,零售价为每件80元时,可以卖出100件(按相关规定零售价不能超过80元).如果零售价在80元的基础上每降价1元,可以多卖出10件,当零售价在80元的基础上降价x元时,能获得2160元的利润,根据题意,可列方程为()A.x(100+10x)=2160 B.(20﹣x)(100+10x)=2160C.(20+x)(100+10x)=2160 D.(20﹣x)(100﹣10x)=21608.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.9.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<510.如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为()A. B. C. D.11.“割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为().A.1 B.3 C.3.1 D.3.1412.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣1二、填空题(每题4分,共24分)13.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.14.已知扇形的圆心角为,所对的弧长为,则此扇形的面积是________.15.如图,是的直径,弦则阴影部分图形的面积为_________.16.把方程2x2﹣1=x(x+3)化成一般形式是_________.17.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.18.已知二次函数的自变量与函数的部分对应值列表如下:…-3-2-10……0-3-4-3…则关于的方程的解是______.三、解答题(共78分)19.(8分)计算:.20.(8分)如图,直线y=x+3分别交x轴、y轴于点A、C.点P是该直线与双曲线在第一象限内的一个交点,PB⊥x轴于B,且S△ABP=16.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点Q与点P在同一个反比例函数的图象上,且点Q在直线PB的右侧,作QD⊥x轴于D,当△BQD与△AOC相似时,求点Q的横坐标.21.(8分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.22.(10分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)23.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.24.(10分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.(1)用含t的代数式分别表示点E和点F的坐标;(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;(3)当t=2时,求O′点在坐标.25.(12分)综合与实践:操作与发现:如图,已知A,B两点在直线CD的同一侧,线段AE,BF均是直线CD的垂线段,且BF在AE的右边,AE=2BF,将BF沿直线CD向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线CD相交于点P,点G是AE的中点,连接BG.探索与证明:求证:(1)四边形EFBG是矩形;(2)△ABG∽△PBF.26.如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)
参考答案一、选择题(每题4分,共48分)1、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,
∴
解得:a=2cm.
故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.2、B【解析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=-,得到空白部分的面积=+,于是得到结论.【详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB
∴AO1=AO2=O1O2=BO1=1,
∴△AO1O2是等边三角形,
∴∠AO1O2=60°,AB=2AO1sin60°=
∴∠AO1B=120°,∴阴影部分的面积=2×()=-,
∴空白部分和阴影部分的面积和=2π-(-)=+,
∴骰子落在重叠区域(阴影部分)的概率大约为≈,
故选B.【点睛】此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.3、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.4、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.5、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).6、D【分析】根据三角形面积公式、矩形性质及相似多边形的性质得出:①矩形对角线平分矩形,S△ABD=S△BCD,只有P点在BD上时,S₁+S₂=S₃+S4;②根据底边相等的两个三角形的面积公式求和可知,S₁+S₃=矩形ABCD面积,同理S₂+S4=矩形ABCD面积,所以S₁+S₃=S₂+S4;③根据底边相等高不相等的三角形面积比等于高的比来说明即可;④根据相似四边形判定和性质,对应角相等、对应边成比例的四边形相似,矩形AEPF∽矩形ABCD推出,点P在对角线上.【详解】解:①当点P在矩形的对角线BD上时,S₁+S₂=S₃+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立。故①不一定正确;②∵矩形∴AB=CD,AD=BC∵△APD以AD为底边,△PBC以BC为底边,这两三角形的底相等,高的和为AB,∴S₁+S₃=S矩形ABCD;同理可得S₂+S4=S矩形ABCD,∴②S₂+S4=S₁+S₃正确;③若S₃=2S₁,只能得出△APD与△PBC高度之比是,S₂、S4分别是以AB、CD为底的三角形的面积,底相等,高的比不一定等于,S4=2S2不一定正确;故此选项错误;④过点P分别作PF⊥AD于点F,PE⊥AB于点E,F.若S1=S2,.则AD·PF=AB·PE∴△APD与△PAB的高的比为:∵∠DAE=∠PEA=∠PFA=90°∴四边形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P点在矩形的对角线上,选项④正确.故选:D【点睛】本题考查了三角形面积公式的应用,相似多边形的判定和性质,用相似多边形性质对应边成比例是解决本题的难点.7、B【分析】根据第一句已知条件可得该货物单件利润为元,根据第二句话的已知条件,降价几个1元,就可以多卖出几个10件,可得降价后利润为元,数量为件,两者相乘得2160元,列方程即可.【详解】解:由题意得,当售价在80元基础上降价元时,.【点睛】本题主要考查的是一元二次方程应用题里的利润问题,理解掌握其中的数量关系列出方程是解答这类应用题的关键.8、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,
∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比9、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.10、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明△ABD为等边三角形,得出BD=AB=2,再根据CD=BC-BD即可得出结果.【详解】解:在Rt△ABC中,AC=2,∠B=60°,∴BC=2AB,BC2=AC2+AB2,∴4AB2=AC2+AB2,
∴AB=2,BC=4,
由旋转得,AD=AB,
∵∠B=60°,∴△ABD为等边三角形,
∴BD=AB=2,
∴CD=BC-BD=4-2=2,
故选:A.【点睛】此题主要考查了旋转的性质,含30°角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质.11、B【分析】先求出,进而得出,根据这个圆的内接正十二边形的面积为进行求解.【详解】∵是圆的内接正十二边形,∴,∵,∴,∴这个圆的内接正十二边形的面积为,故选B.【点睛】本题考查正十二边形的面积计算,先求出是解题的关键.12、C【解析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.二、填空题(每题4分,共24分)13、110°.【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.14、【分析】利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.【详解】设扇形所在圆的半径为r.∵扇形的圆心角为240°,所对的弧长为,∴l,解得:r=6,则扇形面积为rl=.故答案为:.【点睛】本题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解答本题的关键.15、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴阴影部分的面积S=S扇形COB=,
故答案为:.【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.16、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案为x2﹣3x﹣1=1.17、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.18、,【分析】首先根据与函数的部分对应值求出二次函数解析式,然后即可得出一元二次方程的解.【详解】将(0,-3)(-1,-4)(-3,0)代入二次函数,得解得∴二次函数解析式为∴方程为∴方程的解为,故答案为,.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.三、解答题(共78分)19、【分析】根据特殊角的三角函数值及绝对值、乘方、零指数次幂的定义进行计算即可.【详解】原式【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、(1)证明见解析;(2)点P的坐标为(2,4);(3)点Q的横坐标为:或.【分析】(1)利用PB∥OC,即可证明三角形相似;(2)由一次函数解析式,先求点A、C的坐标,由△AOC∽△ABP,利用线段比求出BP,AB的值,从而可求出点P的坐标即可;(3)把P坐标代入求出反比例函数,设Q点坐标为(n,),根据△BQD与△AOC相似分两种情况,利用线段比联立方程组求出n的值,即可确定出Q坐标.【详解】(1)证明:∵PB⊥x轴,OC⊥x轴,∴OC∥PB,∴△AOC∽△ABP;(2)解:对于直线y=x+3,令x=0,得y=3;令y=0,得x=-6;∴A(-6,0),C(0,4),∴OA=6,OC=3.∵△AOC∽△ABP,∴,∵S△ABP=16,S△AOC=,∴,∴,即,∴PB=4,AB=8,∴OB=2,∴点P的坐标为:(2,4).(3)设反比例函数的解析式为:y=,把P(2,4)代入,得k=xy=2×4=8,∴y=.点Q在双曲线上,可设点Q的坐标为:(n,)(n>2),则BD=,QD=,①当△BQD∽△ACO时,,即,整理得:,解得:或;②当△BQD∽△CAO时,,即,整理得:,解得:,(舍去),综上①②所述,点Q的横坐标为:1+或1+.【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.21、花园的面积能达到20m2,此时BC的值为2m.【分析】设AB=xm,则BC=(32﹣2x)m,根据矩形的面积公式结合花园面积为20m2,即可得出关于x的一元二次方程,解之即可得出x的值,结合墙的长度可确定x的值,进而可得出BC的长度.【详解】设AB=xm,则BC=(32﹣2x)m,依题意,得:x(32﹣2x)=20,整理,得:x2﹣16x+60=0,解得:x1=6,x2=1.∵32﹣2x≤16,∴x≥8,∴x=1,32﹣2x=2.答:花园的面积能达到20m2,此时BC的值为2m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解答本题的关键.22、(1)8,8,;(2)选择小华参赛.(3)变小【分析】(1)根据方差、平均数和中位数的定义求解;
(2)根据方差的意义求解;
(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:=8,小华射击命中的方差:,小亮射击命中的中位数:;(2)解:∵小华=小亮,S2小华<S2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.23、(1)详见解析;(2)详见解析;(3)【分析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=AB.∵CD是⊙O的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=∴AH=+2=.【点睛】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.24、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)【分析】(1)直接根据路程等于速度乘以时间,即可得出结论;(2)先判断出∠DOE=∠EAF=90°,再分两种情况,用相似三角形得出比例式,建立方程求解,最后判断即可得出结论;(3)先根据勾股定理求出DE,再利用三角形的面积求出OG,进而求出OO',再判断出△OHO'∽△EOD,得出比例式建立方程求解即可得出结论.【详解】解:(1)∵BA⊥x轴,CB⊥y轴,B(12,10),∴AB=10,由运动知,OD=t,OE=3t,BF=2t(0≤t≤4),∴AF=10﹣2t,∴E(3t,0),F(12,10﹣2t);(2)由(1)知,OD=t,OE=3t,AF=10﹣2t,∴AE=12﹣3t,∵BA⊥x轴,∴∠OAB=90°=∠AOC,∵△ODE与以点A,E,F为顶点的三角形相似,∴△DOE∽△EAF或△DOE∽△FAE,①当△DOE∽△EAF时,,∴,∴t=,②当△DOE∽△FAE时,,∴,∴t=6(舍)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 井下电气设备防爆管理制度
- 3《荷花》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 2024年海口客运驾驶从业资格证考试题库及答案
- 2024年广东道路客运资格证考试题
- 2024年云南申请客运从业资格证考试题和答案
- 2024年海口客运资格证必考题答案
- 2024年云南客运从业资格证考试题技巧和方法图片
- 2024年贵阳客运员考试题库答案解析
- 2024年青岛2024年道路旅客运输从业资格证模拟试题
- 2024年衡水大客车从业资格证考试试题
- 工程代收款付款协议书范文模板
- 全套教学课件《工程伦理学》
- 雾化吸入疗法的用药指南2024课件
- 人音版六年级上册全册音乐教案(新教材)
- 2024-2030年中国青霉素行业深度调研及投资前景预测研究报告
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 地 理期中测试卷(一) 2024-2025学年地理湘教版七年级上册
- 《公共管理学》第五章-政府作用课件
- 2024年山东济南轨道交通集团限公司招聘95人历年高频难、易错点500题模拟试题附带答案详解
- 2024年认证行业法律法规及认证基础知识
- 2024年临时用工管理制度(五篇)
评论
0/150
提交评论