四川省重点中学2022-2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
四川省重点中学2022-2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
四川省重点中学2022-2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
四川省重点中学2022-2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
四川省重点中学2022-2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12 B.24 C.36 D.482.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定3.下列各点中,在函数y=-图象上的是()A.(﹣2,4) B.(2,4) C.(﹣2,﹣4) D.(8,1)4.的值为()A. B. C. D.5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.6.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件7.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2 B.cm2 C.cm2 D.()ncm28.将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+19.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.010.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.方程的解是_____.12.若关于x的一元二次方程x2﹣4x+m=0没有实数根,则m的取值范围是_____.13.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.14.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为_____km.15.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.16.如果等腰△ABC中,,,那么______.17.已知一次函数的图象与反比例函数的图象相交,其中有一个交点的横坐标是,则的值为_____.18.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.20.(6分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?21.(6分)利用公式法解方程:x2﹣x﹣3=1.22.(8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴,∴①,如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,∵DE是⊙O的直径,∴∠DBE=90°,∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB,∴,∴②,任务:(1)观察发现:,(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.23.(8分)如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.24.(8分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)25.(10分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与⊙O的位置关系是_____.(直接写出答案)(2)若AC=5,BC=12,求⊙O的半径.26.(10分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:△ABC中,D是AB的中点,DE∥BC,是的中点,∠BEC=90°,△BCE的周长故选B.点睛:三角形的中位线平行于第三边而且等于第三边的一半.2、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.3、A【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.4、C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°=,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.5、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B6、D【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B.任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C.一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.7、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1)=cm1.故选B.【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.8、D【分析】根据二次函数图像的平移法则进行推导即可.【详解】解:将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故选:D.【点睛】本题考查了二次函数图像的平移,掌握并灵活运用“上加下减,左加右减”的平移原则是解题的关键.9、D【解析】由题意可知,该一元二次方程根的判别式的值大于零,即(-2)2-4m>0,∴m<1.对照本题的四个选项,只有D选项符合上述m的取值范围.故本题应选D.10、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.二、填空题(每小题3分,共24分)11、x1=2,x2=﹣1【解析】解:方程两边平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.经检验,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.12、m>4【分析】根据根的判别式即可求出答案.【详解】解:由题意可知:△<0,∴,∴m>4故答案为:m>4【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.13、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.14、1+1【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×=1(km),OD=OAcos∠AOD=4×cos30°=4×=1(km),在Rt△ABD中,BD=AD=1km,∴OB=OD+BD=1+1(km),故答案为:1+1.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.15、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.16、;【分析】过点作于点,过点作于点,由于,所以,,根据勾股定理以及锐角三角函数的定义可求出的长度.【详解】解:过点作于点,过点作于点,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识.17、1.【解析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k的值.【详解】在y=x+1中,令x=2,

解得y=3,

则交点坐标是:(2,3),

代入y=

得:k=1.

故答案是:1.【点睛】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.18、1或4或2.1.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=1-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,=∴,解得:x=2.1;②、当△APD∽△PBC时,=,即=,解得:x=1或x=4,综上所述DP=1或4或2.1【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.三、解答题(共66分)19、(1)证明见解析;(2)EF=2.【分析】(1)、先证明四边形AOCD是菱形,从而得到∠AOD=∠COD=60°,再根据切线的性质得∠FDO=90°,接着证明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根据切线的判定定理即可得到结论;(2)、在Rt△OBF中,利用60度的正切的定义求解.【详解】(1)、连结OD,如图,∵四边形AOCD是平行四边形,而OA=OC,∴四边形AOCD是菱形,∴△OAD和△OCD都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF为切线,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线;(2)、在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.考点:(1)、切线的判定与性质;(2)、平行四边形的性质20、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150",解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.考点:一次函数与二次函数的实际应用.21、x1=,x2=.【分析】观察方程为一般形式,找出此时二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于1,故利用求根公式可得出方程的两个解.【详解】解:x2﹣x﹣3=1,∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>1,∴x==,∴x1=,x2=.【点睛】此题考查了利用公式法来求一元二次方程的解,利用此方法解方程时,首先将方程化为一般形式,找出相应的a,b及c的值,代入b2-4ac中求值,当b2-4ac≥1时,可代入求根公式来求解.22、(1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4).【解析】(1)直接观察可得;(2)由三角形内心的性质可得∠BAD=∠CAD,∠CBI=∠ABI,由圆周角定理可得∠DBC=∠CAD,再根据三角形外角的性质即可求得∠BID=∠DBI,继而可证得BD=ID;(3)应用(1)(2)结论即可;(4)直接代入结论进行计算即可.【详解】(1)∵O、I、N三点共线,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案为:R﹣d;(2)BD=ID,理由如下:∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案为:.【点睛】本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等,综合性较强,熟练掌握相关知识是解题的关键.23、(1);(2)当时,PM有最大值;(3)存在,理由见解析;,,,【分析】(1)先求得点、的坐标,再代入二次函数表达式即可求得答案;(2)设点横坐标为,则,,求得PM关于的表达式,即可求解;(3)设,则,求得,根据等腰直角三角形的性质,求得,即可求得答案.【详解】(1),令,则,令,则,故点、的坐标分别为、,将、代入二次函数表达式为,解得:,故抛物线的表达式为:.(2)设点横坐标为,则,,,当时,PM有最大值;(3)如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,解得或,或,当时,解得或,或,综上可知存在满足条件的点,其坐标为,,,.【点睛】本题主要考查的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论