版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知如图,中,,,,边的垂直平分线交于点,交于点,则的长是().A. B. C.4 D.62.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是()A. B. C. D.3.如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为().A.; B.; C.; D..4.下列关于x的一元二次方程没有实数根的是()A. B. C. D.5.下列各式正确的是()A. B.C. D.6.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是()A.是表示甲离地的距离与时间关系的图象B.乙的速度是C.两人相遇时间在D.当甲到达终点时乙距离终点还有7.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9π B.18π C.24π D.36π8.对于非零实数,规定,若,则的值为A. B. C. D.9.将6497.1亿用科学记数法表示为()A.6.4971×1012 B.64.971×1010 C.6.5×1011 D.6.4971×101110.下列事件是必然事件的是()A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同11.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次12.由3x=2y(x≠0),可得比例式为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,是正三角形,D、E分别是BC、AC上的点,当=_______时,~.14.二次函数图象的顶点坐标为________.15.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.16.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.17.如图,矩形中,,,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_______.18.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.三、解答题(共78分)19.(8分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.20.(8分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.21.(8分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.22.(10分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.求证:;求证:;直接写出的最小值.23.(10分)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中为下水管道口直径,为可绕转轴自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径,为检修时阀门开启的位置,且.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达位置时,在点处测得俯角,若此时点恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)24.(10分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;25.(12分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.【详解】因为中,,,,所以BC=因为的垂直平分线交于点,所以AE=EC设AE=x,则BE=8-x,EC=x在Rt△BCE中,由BE2+BC2=EC2可得x2+(8-x)2=62解得x=.即AE=故选:B【点睛】考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.2、A【解析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.【详解】连结BE,∵点E是∠ACB与∠CAB的交点,∴点E是△ABC的内心,∴BE平分∠ABC,∵AB为直径,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:,DA=R,点E的运动路径为弧AEB,弧长为:,C、E两点的运动路径长比为:,故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.3、D【解析】连接.,由切线的性质可知,由四边形内角和可求出的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知的度数.【详解】解:连接.,∵.分别与相切于.两点,∴,,∴,∴,∴.故选:D.【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.4、D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.5、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.6、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A.是表示甲离地的距离与时间关系的图象是正确的;B.乙用时3小时,乙的速度,90÷3=,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:解得:∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:解得:即乙对应的函数解析式为y=30x-15则有:解得:x=1.4h,故C选项错误;D.当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:圆锥的侧面积=×2π×3×6=18π.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、A【解析】试题分析:∵,∴.又∵,∴.解这个分式方程并检验,得.故选A.9、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6497.1亿=649710000000=6.4971×1.故选:D.【点睛】此题主要考查科学记数法,解题的关键是熟知科学记数法的表示方法.10、D【分析】根据必然事件的定义即可得出答案.【详解】ABC均为随机事件,D是必然事件,故答案选择D.【点睛】本题考查的是必然事件的定义:一定会发生的事情.11、B【解析】试题分析:A.“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C.“概率为0.0001的事件”是随机事件,选项错误;D.任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.考点:随机事件.12、C【分析】由3x=2y(x≠0),根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:A、由得,2x=3y,故本选项不符合题意;B、由得,2x=3y,故本选项不符合题意;C、由得,3x=2y,故本选项符合题意;D、由得,xy=6,故本选项不符合题意.故选:C.【点睛】本题考查比例的性质相关,主要利用了两内项之积等于两外项之积,熟练掌握其性质是解题的关键.二、填空题(每题4分,共24分)13、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根据相似三角形的对应角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性质,即可求得∠ADE的度数【详解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,【点睛】此题考查了相似三角形的判定与性质、等边三角形的性质以及三角形外角的性质.此题难度适中.14、【解析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.15、2【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得r=2cm.考点:圆锥侧面展开扇形与底面圆之间的关系.16、3或1.2【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.17、【分析】阴影面积=矩形面积-三角形面积-扇形面积.【详解】作EFBC于F,如图所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积,解题关键是找到所求的量的等量关系.18、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.20、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【点睛】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.21、136°【解析】试题分析:由∠BOD=88°,根据“圆周角定理”可得∠BAD的度数;由四边形ABCD是⊙O的内接四边形,可得∠BAD+∠BCD=180°,由此即可解得∠BCD的度数.试题解析:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°.22、(1)证明见解析;(2)证明见解析;(3)的最小值为【分析】(1)由得出,进而得出,即可得出;(2)首先由正方形的性质得出,,然后由(1)中结论得出,进而即可判定,进而得出(3)首先由(1)中得出,然后构建圆,找出DE的最小值即可得解.【详解】∵四边形是正方形由(1)知,又由(1)中,得若使有最小值,则DE最小,由(2)中,点E在以AB为直径的圆上,如图所示∴DE最小值为DO-OE=∴的最小值为【点睛】此题主要考查相似三角形的性质,以及动点综合问题,解题关键是找出最小值.23、(1);(2)【分析】(1)根据题意即可得到结论;
(2)根据余角的定义得到∠BAO=22.5°,根据等腰三角形的性质得到∠BAO=∠ABO=22.5°,由三角形的外角的性质得到∠BOP=45°,解直角三角形即可得到结论.【详解】解:(1)阀门被下水道的水冲开与被河水关闭过程中,.(2)∵,,∴∵,∴,∴.如图,过点作于点,在中,∵,∴,∴.所以,此时下水道内水的深度约为.【点睛】此题考查了俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.24、(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD=∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.25、(1)见解析;(2)时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;
(2)由韦达定理得,代入到中,可求得k的值.【详解】解:(1)①当,即k=1时,方程为一元一次方程,∴是方程的一个解.②当时,时,方程为一元二次方程,则,∴方程有两不相等的实数根.综合①②得,无论k为何值,方程总有实数根.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风季施工措施
- 工艺管道施工质量通病及整改措施
- 股权转让回购协议
- 公共广播系统工程改造分包合同范本
- 市政道路施工(工程)合同范本(发包人)
- 2025年拖拉机买卖合同范本
- 加油站紧急疏散预案(4篇)
- 2025年度工作总结与计划标准版本(3篇)
- 一中教务员职责(3篇)
- 餐饮企业管理规章制度(2篇)
- GB/T 44899-2024商品条码散装和大宗商品编码与条码表示
- 高考英语一轮复习知识清单(全国版)专题06 语法填空倒装句100题(精练) 含答案及解析
- 侵入性器械(操作)相关感染防控制度的落实
- 土方开挖及周边环境保护方案
- 2024年安徽省公务员录用考试《行测》试题及答案解析
- 2024年度危废培训完整课件
- 福建师范大学《教育学(含教师职业道德)》2023-2024学年第一学期期末试卷
- 苹果三星专利之争
- 人教版2024-2025学年六年级数学上册5.4 扇形的面积 同步练习(附答案解析)
- 《Java程序设计应用开发》全套教学课件
- 学校食堂菜谱及定价方案
评论
0/150
提交评论