四川省凉山彝族自治州宁南三峡白鹤滩学校2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第1页
四川省凉山彝族自治州宁南三峡白鹤滩学校2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第2页
四川省凉山彝族自治州宁南三峡白鹤滩学校2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第3页
四川省凉山彝族自治州宁南三峡白鹤滩学校2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第4页
四川省凉山彝族自治州宁南三峡白鹤滩学校2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.2.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.3.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人4.把二次函数,用配方法化为的形式为()A. B.C. D.5.如图,点A、B、C都在上,若∠AOB=72°,则∠ACB的度数为()A.18° B.30° C.36° D.72°6.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是()A.1张 B.4张 C.9张 D.12张7.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()A.1 B.2 C.0,1 D.1,28.若关于的方程,它的一根为3,则另一根为()A.3 B. C. D.9.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=()A.1 B.2 C.4 D.810.二位同学在研究函数(为实数,且)时,甲发现当0<<1时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则()A.甲、乙的结论都错误 B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确 D.甲的结论错误,乙的结论正确11.下列几何体的左视图为长方形的是()A. B. C. D.12.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆二、填空题(每题4分,共24分)13.如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是______.14.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)15.已知两个数的差等于2,积等于15,则这两个数中较大的是.16.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.17.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.18.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.20.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.21.(8分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?22.(10分)某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每降价10元,则每天可多售出50双.设每双降价x元,每天总获利y元.(1)如果降价40元,每天总获利多少元呢?(2)每双售价为多少元时,每天的总获利最大?最大获利是多少?23.(10分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.24.(10分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可).25.(12分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式;判断此函数图象的形状;并在图②中画出此函数的图象;(3)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.26.解方程(1)(2)

参考答案一、选择题(每题4分,共48分)1、A【分析】首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.2、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.3、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.4、B【分析】先提取二次项系数,再根据完全平方公式整理即可.【详解】解:;故选:B.【点睛】本题考查了二次函数的性质,二次函数的最值,二次函数的三种形式的转化,难点在于(3)判断出二次函数取最大值时的自变量x的值.5、C【详解】解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故选C.6、D【分析】设箱中卡的总张数可能是x张,则绿卡有(x-3)张,根据抽到绿卡的概率稳定在75%附近,利用概率公式列方程求出x的值即可得答案.【详解】设箱中卡的总张数可能是x张,∵箱子中有3张红卡和若干张绿卡,∴绿卡有(x-3)张,∵抽到绿卡的概率稳定在75%附近,∴,解得:x=12,∴箱中卡的总张数可能是12张,故选:D.【点睛】本题考查等可能情形下概率的计算,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.7、C【解析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.8、C【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【详解】设方程的另一根为t,

根据题意得:3+t=2,

解得:t=-1,

即方程的另一根为-1.

故选:C.【点睛】本题主要考查了一元二次方程根与系数的关系:是一元二次方程的两根时,,.9、B【分析】利用反比例函数k的几何意义判断即可.【详解】解:根据题意得:S△AOB=×4=2,故选:B.【点睛】本题考查了反比例函数系数k的几何意义,关键是熟练掌握“在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|.”10、D【分析】先根据函数的解析式可得顶点的横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【详解】,原函数定为二次函数甲:顶点横坐标为,,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【点睛】本题考查二次函数图象的性质、顶点坐标、一元二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.11、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.12、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、或【分析】先求出点A(-4,0),B(0,-3),利用勾股定理得到AB=5,过点P作PC⊥AB于点C,则PC=1,证明△PAC∽△BAO,得到,求出PA=,再分点P在点A的左侧和右侧两种情况分别求出OP,即可得到点P的坐标.【详解】令中x=0,得y=-3;令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,过点P作PC⊥AB于点C,则PC=1,∴∠PCA=∠AOB=90°,∵∠PAC=∠BAO,∴△PAC∽△BAO,∴,∴,∴PA=,当点P在点A左侧时,PO=PA+OA=+4=,∴点P的坐标为(-,0);当点P在点A的右侧时,PO=OA-PA=4-=,∴点P的坐标为(-,0),故答案为:或.【点睛】此题考查一次函数与x轴、y轴的交点坐标,勾股定理,圆的切线的性质定理,相似三角形的判定及性质,解题中注意运用分类讨论的思想.14、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.15、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.16、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.17、【分析】解:如图,连接OA、OB,易得△AOB是等边三角形,从而可得OA=AB=4,再过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,然后解直角△AOM求得AM的长,进而可得答案.【详解】解:如图,连接OA、OB,则∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=AB=4,过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,在直角△AOM中,,∴AE=2AM=.故答案为:.【点睛】本题考查了正多边形和圆,作辅助线构造直角三角形、利用解直角三角形的知识求解是解题关键.18、【详解】解:这个正十二面体,12个面上分别写有1~12这12个整数,其中是3的倍数或4的倍数的3,6,9,12,4,8,共6种情况,故向上一面的数字是3的倍数或4的倍数的概率是6/12=故答案为:.三、解答题(共78分)19、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),点A、D在同一反比例函数图象上,可得2a=(2+a),求出a的值即可;(2)分两种情形:①如图2中,当∠PA1D=90°时.②如图2中,当∠PDA1=90°时.分别构建方程解决问题即可;详解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),∵点A、D在同一反比例函数图象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如图2中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.20、(1)(2).【分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.21、购买了20件这种服装【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可;【详解】解:设购买了件这种服装.,∵∴购买的演出服多于10件根据题意得出:,解得:,,当时,元元,符合题意;当时,元元,不合题意,舍去;故答案为:.答:购买了20件这种服装.【点睛】本题考查了一元二次方程的应用,解答本题的关键是根据题意找出等量关系列出方程.22、(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.【分析】(1)根据题意即可列式求解;(2)根据题意,得y=(400+5x)(300-x-100),根据二次函数的图像与性质即可求解.【详解】(1)根据题意知:每降价1元,则每天可多售出5双,∴(400+5×40)×(300-40-100)=600×160=96000(元)答:如果降价40元,每天总获利96000元.(2)根据题意,得y=(400+5x)(300-x-100)=-5x2+600x+80000=-5(x—60)2+98000∵a=-5,开口向下,y有最大值,∴当x=60时,即当售价为300—60=240元时,y有最大值=98000元答:每双售价为240元时,每天的总获利最大,最大获利是98000元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意写出函数关系式.23、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.24、(1);(2);(3)答案不唯一,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论