版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.使分式的值等于0的x的值是()A.-1 B.-1或5 C.5 D.1或-52.下列运算,正确的是()A. B. C. D.3.在实数,,,中,无理数是()A. B. C. D.4.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶()A.26千米 B.27千米 C.28千米 D.30千米5.下列各式从左到右的变形中,属于因式分解的是()A.m(a+b)=ma+mbB.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1)D.x2+16﹣y2=(x+y)(x﹣y)+166.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.7.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112° B.120° C.146° D.150°8.若,则内应填的式子是()A. B. C.3 D.9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.10.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.二、填空题(每小题3分,共24分)11.十二边形的内角和是________度.正五边形的每一个外角是________度.12.化简_______.13.若二次根式是最简二次根式,则最小的正整数为______.14.若分式方程无解,则m=______.15.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=°16.“角平分线上的点到角两边的距离相等”的逆命题是_____________.17.如图,在中,,于,若,,则___________.18.已知反比例函数,当时,的值随着增大而减小,则实数的取值范围__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.20.(6分)每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(6分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.(1)当时,=°;点从点向点运动时,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.22.(8分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.23.(8分)如图,Rt△ABC的顶点都在正方形网格的格点上,且直角顶点A的坐标是(﹣2,3),请根据条件建立直角坐标系,并写出点B,C的坐标.24.(8分)在正方形网格中,每个小方格都是边长为1的正方形,建立如图所示的平面直角坐标系,的三个顶点都落在小正方形方格的顶点上(1)点A的坐标是,点B的坐标是,点C的坐标是;(2)在图中画出关于y轴对称的;(3)直接写出的面积.25.(10分)计算:(1)·(-3)-2(2)26.(10分)如图,在中,厘米,厘米,点为的中点,点在线段上以2厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.(1)若点的运动速度与点相同,经过1秒后,与是否全等,请说明理由.(2)若点的运动速度与点不同,当点的运动速度为多少时,能够使与全等?
参考答案一、选择题(每小题3分,共30分)1、C【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵∴∴x1=5或x2=-1(舍去)故选C【点睛】此题考查解一元二次方程-因式分解法、分式的值为零的条件,解题关键在于使得分母≠1.2、D【分析】根据合并同类项法则、同底数幂的乘法和同底数幂的除法逐一判断即可.【详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是合并同类项和幂的运算性质,掌握合并同类项法则、同底数幂的乘法和同底数幂的除法是解决此题的关键.3、D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【详解】解:在实数,,,中,=2,=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.4、B【分析】设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.【详解】∵小王家距上班地点18千米,设小王用自驾车方式上班平均每小时行驶x千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27,经检验x=27是原方程的解,且符合题意.即:小王用自驾车方式上班平均每小时行驶27千米.故答案选:B.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.5、C【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、把一个多项式转化成几个整式积的形式,故C符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选C.【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.6、D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【详解】解:,,∵,∴,整理,得,∴,∴.故选D.【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.7、A【分析】根据等边对等角得到∠A=∠B,证得△ADF≌△BFE,得∠ADF=∠BFE,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,
∴∠A=∠B,
在△ADF和△BFE中,∴△ADF≌△BFE(SAS),
∴∠ADF=∠BFE,
∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,
∴∠A=∠DFE=34°,∴∠B=34°,
∴∠P=180°-∠A-∠B=112°,
故选:A.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.8、A【分析】根据题意得出=,利用分式的性质求解即可.【详解】根据题意得出=故选:A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.9、D【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.二、填空题(每小题3分,共24分)11、18001【分析】根据多边形的内角和,多边形的外角和等于360°即可得到解答.【详解】解:十二边形的内角和,正五边形的每一个外角,故答案为:1800,1.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的内角和和外角和是解题的关键.12、【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.13、1【分析】根据最简二次根式的定义求解即可.【详解】解:∵a是正整数,且是最简二次根式,∴当a=1时,,不是最简二次根式,当a=1时,,是最简二次根式,则最小的正整数a为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.14、-3【分析】先将分式方程化成整式方程,再将x=-1代入求出m的值,即可得出答案.【详解】3x=m+2(x+1)∵分式方程无解∴x=-1将x=-1代入得:3×(-1)=m+2×(-1+1)解得:m=-3故答案为:-3.【点睛】本题考查的是解分式方程,难度中等,分析分式方程有增根是解决本题的关键.15、15【解析】解:∵AD是等边△ABC的中线,,,,,,16、到角的两边的距离相等的点在角平分线上【分析】把一个命题的题设和结论互换即可得到其逆命题.【详解】“角平分线上的点到角两边的距离相等”的逆命题是“到角的两边的距离相等的点在角平分线上”.
故答案为:到角的两边的距离相等的点在角平分线上.【点睛】此题考查命题与定理,解题关键在于掌握如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.17、2【分析】延长BA,过点C作CD⊥BA于点D,则△ACD是等腰直角三角形,设CD=AD=h,CH=x,利用面积相等和勾股定理,得到关于h与x的方程组,解方程组,求出x,即可得到CH的长度.【详解】解:延长BA,过点C作CD⊥BA于点D,如图:∵,∴∠CAD=45°,∴△ACD是等腰直角三角形,∴CD=AD,∵,∴△ABH和△ACH是直角三角形,设CD=AD=h,CH=x,由勾股定理,得,,∵,∴,联合方程组,得,解得:或(舍去);∴.故答案为:2.【点睛】本题考查了等腰三角形的判定和性质,勾股定理,解题的关键是熟练运用勾股定理和面积相等法,正确得到边之间的关系,从而列式计算.18、【分析】先根据反比例函数的性质得出1-2k>0,再解不等式求出k的取值范围.【详解】反比例函数的图象在其每个象限内,随着的增大而减小,,.故答案为:.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.三、解答题(共66分)19、⑴证明解析;(2)30°;(3)∠P的度数不变,∠P=25°.【分析】(1)由直角三角形两锐角互余及等角的余角相等即可证明;(2)由直角三角形两锐角互余、等量代换求得∠DOB=∠EOB=∠OAE=∠E;然后根据外角定理知∠DOB+∠EOB+∠OEA=90°;从而求得∠DOB=30°,即∠A=30°;(3)由角平分线的性质知∠FOM=45°-∠AOC①,∠PCO=∠A+∠AOC②,根据①②解得∠PCO+∠FOM=45°+∠A,最后根据三角形内角和定理求得旋转后的∠P的度数.【详解】解⑴∵△AOB是直角三角形∴∠A+∠B=90°,∠AOC+∠BOC=90°∵∠A=∠AOC∴∠B=∠BOC⑵∵∠A+∠ABO=90°,∠DOB+∠ABO=90°∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA∵∠DOB+∠EOB+∠OEA=90°∴∠A=30°⑶∠P的度数不变,∠P=25°∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC又OF平分∠AOM,CP平分∠BCO∴∠FOM=45°-∠AOC,∠PCO=∠A+∠AOC∴∠P=180°-(∠PCO+∠FOM+90°)=45°-∠A=25°20、(1)甲万元,乙万元;(2)有种;(3)选购甲型设备台,乙型设备台【分析】(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m台,则购买乙型设备(10−m)台,由购买甲型设备不少于3台且预算购买节省能源的新设备的资金不超过110万元,即可得出关于m的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m的一元一次不等式,解之结合(2)的结论即可找出m的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【详解】解:(1)设甲型设备每台的价格为万元,乙型设备每台的价格为万元,根据题意得:,解得:答:甲型设备每台的价格为万元,乙型设备每台的价格为万元.(2)设购买甲型设备台,则购买乙型设备台,根据题意得:解得:∵取非负整数,∴∴该公司有种购买方案,方案一:购买甲型设备台、乙型设备台;方案二:购买甲型设备台、乙型设备台;方案三:购买甲型设备台、乙型设备台(3)由题意:,解得:,∴为或当时,购买资金为:(万元)当m=5时,购买资金为:(万元)∵,∴最省钱的购买方案为:选购甲型设备台,乙型设备台【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.21、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)∵∠B=40°,∠ADB=105°,
∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,
∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD∴逐渐变小(2)当DC=3时,△ABD≌△DCE,
理由:∵AB=AC,
∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=3,
在△ABD和△DCE中,∴△ABD≌△DCE(AAS);
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,
当DA=DE时,∠DAE=∠DEA=70°,
∴∠BDA=∠DAE+∠C=70°+40°=110°;
当AD=AE时,∠AED=∠ADE=40°,
∴∠DAE=100°,
此时,点D与点B重合,不合题意;
当EA=ED时,∠EAD=∠ADE=40°,
∴∠AED=100°,
∴EDC=∠AED-∠C=60°,
∴∠BDA=180°-40°-60°=80°
综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.22、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论