难点解析北师大版八年级数学下册第五章分式与分式方程专题测试练习题(无超纲)_第1页
难点解析北师大版八年级数学下册第五章分式与分式方程专题测试练习题(无超纲)_第2页
难点解析北师大版八年级数学下册第五章分式与分式方程专题测试练习题(无超纲)_第3页
难点解析北师大版八年级数学下册第五章分式与分式方程专题测试练习题(无超纲)_第4页
难点解析北师大版八年级数学下册第五章分式与分式方程专题测试练习题(无超纲)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版八年级数学下册第五章分式与分式方程专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.2、用科学记数法表示数5.8×10﹣5,它应该等于()A.0.0058 B.0.00058C.0.000058 D.0.0000583、华华同学借了一本书,共280页,要在1周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是()A. B.C. D.4、下列分式中,是最简分式的是()A. B. C. D.5、下列分式中最简分式是()A. B. C. D.6、已知关于x的分式方程=3的解是x=3,则m的值为()A.3 B.﹣3 C.﹣1 D.17、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m~0.00003m.其中,0.000004用科学记数法表示为()A.4×106 B.4×107 C.4×10-6 D.4×10-78、关于x的方程有增根,则m的值是()A.2 B.1 C.0 D.-19、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递.微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()A. B. C. D.10、已知:,则的值是()A. B. C.5 D.﹣5第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如果关于x的方程无解,则k的值为_____.2、已知,则分式的值为_____.3、已知,令,,…,即当n为大于1的奇数时,:当n为大于1的偶数时,,则=__________(用含a的代数式表示),的值为__________.4、一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是,原来得两位数是______.5、当x=________时,分式无意义.三、解答题(5小题,每小题10分,共计50分)1、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.2、计算:.3、先化简,再求值:(x+)÷(x+1),其中x=.4、计算:(1)(2)(3)(4)5、对于任意两个非零实数a,b,定义运算如下:.如:,.根据上述定义,解决下列问题:(1),;(2)如果,那么x=;(3)如果,求x的值.-参考答案-一、单选题1、A【分析】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,选择即可.【详解】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,故选A.【点睛】本题考查了分式方程的应用题,准确找到等量关系是解题的关键.2、C【分析】把5.8的小数点向右移动5个位,即可得到.【详解】.故选:C.【点睛】本题考查把科学记数法表示的数还原,理解用科学记数法表示绝对值较小的数,并能够还原是解题的关键.3、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案.【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程.4、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可.【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意;B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(a﹣b),不属于最简分式,不符合题意;故选:B.【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键.5、C【分析】根据最简分式的定义:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式逐项判断即得答案.【详解】解:A、∵,∴不是最简分式,故本选项不符合题意;B、∵,∴不是最简分式,故本选项不符合题意;C、是最简分式,故本选项符合题意;D、∵,∴不是最简分式,故本选项不符合题意.故选:C.【点睛】本题考查了分式的约分和最简分式的定义,属于基本题型,熟练掌握上述知识是解题的关键.6、B【分析】将x=3代入分式方程中进行求解即可.【详解】解:把x=3代入关于x的分式方程=3得:,解得:m=﹣3,故选:B.【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解.7、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000004=4×10-6.

故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x﹣1),得:m﹣1-x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.【点睛】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,其中1≤<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】故选:B.【点睛】本题考查了科学记数法,科学记数法一般形式为a×10n,其中1≤<10,确定a和n的值是解题关键.10、D【分析】首先分式方程去分母化为整式方程,求出(b﹣a)的值,把(b﹣a)看作一个整体代入分式约分即可.【详解】解:∵,∴b﹣a=ab,∴=﹣=﹣5;故选:D.【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键.二、填空题1、1【分析】首先将分式方程化为整式方程,表示出整式方程的解,再根据分式方程无解确定x的值,然后再求k的值即可.【详解】解:方程去分母得:,解得:,由分式方程无解可得:即,∴,解得:,故答案为:.【点睛】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键.2、##【分析】先把条件式化为再整体代入代数式求值即可.【详解】解:,去分母得:故答案为:【点睛】本题考查的是已知条件式求解分式的值,把条件式变形,再整体代入求值是解本题的关键.3、a-1011【分析】先分别计算再归纳总结规律,这一列数6个数循环,从而可得第一空的答案,再计算从而可得第二空的答案.【详解】解:总结可得:这一列数6个数循环,而=-3×337=-1011,故答案为:【点睛】本题考查的是数的规律探究,同时考查分式的运算,掌握“从具体到一般的探究方法再总结规律并运用规律解决问题”是解本题的关键.4、63【分析】设这个两位数个位上的数为x,,再根据等量关系列出方程,最后检验并作答.【详解】解:设这个两位数个位上的数为x,则可列方程:,整理得66x=198,解得x=3,经检验x=3是原方程的解,则60+x=63,故答案为:63.【点睛】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.5、2【分析】根据分式无意义的条件是分母为0,列出算式计算即可.【详解】解:由题意得,x-2=0,解得,x=2,故答案为:2.【点睛】本题考查的是分式无意义的条件,掌握分式无意义的条件是分母等于0是解题的关键.三、解答题1、(1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为元.则,分三种情形讨论利用一次函数的性质即可解决问题.(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,∴,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:∵客商购进A型商品m件,∴客商购进B型商品件,由题意:,∵A型商品的件数不大于B型的件数,且不小于80件,∵,∴;(3)解:设收益为元,则,①当时,即时,w随m的增大而增大,∴当时,最大收益为元;②当,即时,最大收益为17500元;③当时,即时,w随m的增大而减小,∴时,最大收益为元,∴当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元.【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.2、1【分析】直接利用分式的加减运算法则计算即可.【详解】解:,,,.【点睛】本题主要考查了分式的加减运算,解题的关键是正确掌握运算法则.3、;【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(x+)÷(x+1)===,当x=时,原式==.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.4、(1)(2)(3)(4)【分析】(1)根据二次根式的乘法运算可进行求解;(2)根据分式的加法运算可进行求解;(3)利用平方差公式进行整式的运算即可;(4)先化简,然后再进行二次根式的运算即可.(1)解:;(2)解:;(3)解:原式=;(4)解:原式=.【点睛】本题主要考查二次根式的混合运算、分式的加减运算及整式的运算,熟练掌握各个计算法则是解题的关键.5、(1),;(2);(3).【分析】(1)根据新定义的运算进行计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论