吉林省吉林市吉化九中学2022年数学八年级第一学期期末综合测试试题含解析_第1页
吉林省吉林市吉化九中学2022年数学八年级第一学期期末综合测试试题含解析_第2页
吉林省吉林市吉化九中学2022年数学八年级第一学期期末综合测试试题含解析_第3页
吉林省吉林市吉化九中学2022年数学八年级第一学期期末综合测试试题含解析_第4页
吉林省吉林市吉化九中学2022年数学八年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL2.(3分)25的算术平方根是()A.5 B.﹣5 C.±5 D.53.若分式的值为零,则x的值为()A. B. C.2 D.24.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条 B.2条 C.3条 D.4条5.若,则下列不等式成立的是()A. B. C. D.6.下列各式中,无论x取何值,分式都有意义的是()A. B. C. D.7.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是()A.矩形 B.正方形 C.等腰梯形 D.无法确定8.若分式的值等于0,则的值为()A. B. C. D.9.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动。同时,点Q在线段CA上由C点向A点运动。若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2 B.5 C.1或5 D.2或310.如图,在中,AB=8,BC=6,AB、BC边上的高CE、AD交于点H,则AD与CE的比值是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的斜面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=4m,一滑行爱好者从A点滑行到E点,则他滑行的最短距离为____________m(的值为3)12.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.13.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.14.如图,直线:,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;…,按此作法进行下去.点的坐标为__________.15.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.16.若是完全平方公式,则__________.17.使分式有意义的x的范围是________

。18.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.三、解答题(共66分)19.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF,证明:CF=EB.20.(6分)如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:△ABC≌△CED.21.(6分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.(8分)如图,已知过点的直线与直线:相交于点.(1)求直线的解析式;(2)求四边形的面积.23.(8分)(1)(问题情境)小明遇到这样一个问题:如图①,已知是等边三角形,点为边上中点,,交等边三角形外角平分线所在的直线于点,试探究与的数量关系.小明发现:过作,交于,构造全等三角形,经推理论证问题得到解决.请直接写出与的数量关系,并说明理由.(2)(类比探究)如图②,当是线段上(除外)任意一点时(其他条件不变)试猜想与的数量关系并证明你的结论.(3)(拓展应用)当是线段上延长线上,且满足(其他条件不变)时,请判断的形状,并说明理由.24.(8分)如图,AB∥CD,直线EF分别交直线AB、CD于点M、N,MG平分∠EMB,MH平分∠CNF,求证:MG∥NH.25.(10分)因式分解:(1);(2).26.(10分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题中信息,得出角或边的关系,选择正确的证明三角形全等的判定定理,即可.【详解】由题意知:AB⊥BF,DE⊥BF,CD=BC,∴∠ABC=∠EDC在△EDC和△ABC中∴△EDC≌△ABC(ASA).故选B.【点睛】本题主要考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.2、A【解析】试题分析:∵52考点:算术平方根.3、B【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,

∴|x|-2=0,且x-1≠0,

解得:x=.

故选:B.【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.4、B【分析】先根据勾股定理算出各条线段的长,即可判断.【详解】,,,,,、的长度均是有理数,故选B.考点:本题考查的是勾股定理点评:解答本题的关键是熟练掌握网格的特征,灵活选用恰当的直角三角形使用勾股定理.5、C【分析】根据不等式的性质依次分析判断即可.【详解】A、,则,所以,故A错误;B、,则,故B错误;C、,,故C正确;D、,则,故D错误;故选C.【点睛】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6、A【解析】分式有意义的条件是分母不为1.【详解】A.,无论x取何值,分式都有意义,故该选项符合题意;B.当时,分式有意义,故不符合题意;C.当时,分式有意义,故不符合题意;D.当时,分式有意义,故不符合题意;故选:A【点睛】本题考查的是分式有意义的条件:分母不为1时,掌握分式有意义的条件是解题的关键.7、D【解析】分析:对角线相等的四边形有正方形,矩形,等腰梯形,一般的四边形等.解答:解:用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状可能是正方形,矩形,等腰梯形,一般的四边形等,所以是无法确定.故选D8、B【分析】化简分式即可求解,注意分母不为0.【详解】解:===0∴x=2,经检验:x+2≠0,x=2是原方程的解.故选B.【点睛】本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.9、D【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=1(m/s).故v的值为2或1.故选择:D.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.10、A【分析】根据三角形的面积公式即可得.【详解】由题意得:解得故选:A.【点睛】本题考查了三角形的高,利用三角形的面积公式列出等式是解题关键.二、填空题(每小题3分,共24分)11、1【分析】要使滑行的距离最短,则沿着AE的线段滑行,先将半圆展开为矩形,展开后,A、D、E三点构成直角三角形,AE为斜边,AD和DE为直角边,求出AD和DE的长,再根据勾股定理求出AE的长度即可.【详解】将半圆面展开可得,如图所示:∵滑行部分的斜面是半径为4m的半圆∴AD=4π米,∵AB=CD=1m,CE=4m,∴DE=DC-CE=AB-CE=16米,

在Rt△ADE中,

AE=m.故答案为:1.【点睛】考查了勾股定理的应用和两点之间线段最短,解题关键是把U型池的侧面展开成矩形,“化曲面为平面”,再勾股定理求解.12、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.13、2.1【分析】将数据重新排列,再根据中位数的定义求解可得.【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、1、6,所以这组数据的中位数为=2.1,故答案为:2.1.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14、(-22019,0)【分析】先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2020的坐标.【详解】解:∵点A1坐标为(-1,0),∴OA1=1,∵在中,当x=-1时,y=,即B1点的坐标为(-1,),∴由勾股定理可得OB1==2,即OA2=2,即点A2的坐标为(-2,0),即(-21,0),∴B2的坐标为(-2,),同理,点A3的坐标为(-4,0),即(-22,0),点B3的坐标为(-4,),以此类推便可得出:点A2020的坐标为(-22019,0).故答案为:(-22019,0).【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.15、1【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=1°.【详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=1°.故答案为1.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.16、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.17、x≠1【分析】根据分式有意义的条件可求解.【详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.三、解答题(共66分)19、证明见解析【分析】根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB.【详解】解:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB,∴CF=EB.考点:1.全等三角形的判定与性质;2.角平分线的性质.20、见解析【分析】首先利用平行线的性质可得∠B=∠E,再利用SAS定理判定△ABC≌△CED即可.【详解】解:证明:∵AB∥ED,∴∠B=∠E,在△ABC和△CED中,,∴△ABC≌△CED(SAS).【点睛】本题主要考查了平行线的性质,全等三角形的判定与性质,是一道很简单的全等证明,只需证一次全等,无需添加辅助线,且全等的条件都很明显,关键是熟记全等三角形的判定与性质.21、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.【解析】(1)根据乙五次成绩,先求平均数,再求方差即可,(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,(3)选择成绩高且稳定的人去参加即可.【详解】(1)乙==84,S2乙=[(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104(2)∵甲的方差>乙的方差∴成绩比较稳定的同学是乙,甲的优秀率=×100%=40%乙的优秀率=×100%=80%(3)我认为选乙参加比较合适,因为乙的成绩平均分和优秀率都比甲高,且比甲稳定,因此选乙参加比赛比较合适.【点睛】本题考查了简单的数据分析,包括求平均数,方差,优秀率,属于简单题,熟悉计算方法和理解现实含义是解题关键.22、(1);(2)【分析】(1)根据P点是两直线交点,可求得点P的纵坐标,再利用待定系数法将点B、点P的坐标代入直线l1解析式,得到二元一次方程组,求解即可.(2)根据解析式可求得点啊(-2,0),点C(0,1),由可求得四边形的面积【详解】解:(1)∵点P是两直线的交点,将点P(1,a)代入得,即则的坐标为,设直线的解析式为:,那么,解得:.的解析式为:.(2)直线与轴相交于点,直线与x轴相交于点A的坐标为,点的坐标为则,而,【点睛】本题考查了一次函数求解析式,求一次函数与坐标轴围成的图形面积,解本题的关键是求得各交点坐标求得线段长度,将不规则图形转化为规则图形求面积.23、(1),理由见解析;(2),理由见解析;(3)是等边三角形,理由见解析.【分析】(1)根据等边三角形的性质可得,然后根据平行线的性质可得,从而证出是等边三角形,即可证出,然后证出、,最后利用ASA即可证出,从而得出结论;(2)过作交于,同理可知是等边三角形,从而证出,再证出和,利用ASA即可证出,从而得出结论;(3)根据等三角形的性质和已知条件可得,再根据三线合一可得垂直平分,从而得出,再根据等边三角形的判定即可证出结论.【详解】解:(1),理由如下:∵是等边三角形,∴,∵,∴,∴是等边三角形,∴,又,∴,∵是外角平分线,∴,∴,∴∵,∴,∴在与中,∴,∴;(2)证明:过作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论