版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知,添加以下条件,不能判定的是()A. B. C. D.2.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.3.以下列各线段长为边,能组成三角形的是()A. B. C. D.4.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是()A. B.C. D.5.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是()A.中国馆的坐标为B.国际馆的坐标为C.生活体验馆的坐标为D.植物馆的坐标为6.在二次根式,,,中,最简二次根式有()A.1个 B.2个 C.3个 D.4个7.已知直角三角形两边的长分别为6和8,则此三角形的周长为()A.14 B. C.24或 D.14或8.如图是金堂县赵镇某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是 B.中位数是C.平均数是 D.众数是9.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是()A. B.平分 C. D.10.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.11.纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米=0.000000001米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为()A.0.2×10-9米 B.2×1012.已知一组数据为2,3,5,7,8,则这组数据的方差为()A.3 B.4.5 C.5.2 D.6二、填空题(每题4分,共24分)13.函数的定义域是__________.14.如图,直线经过原点,点在轴上,于.若A(4,0),B(m,3),C(n,-5),则______.15.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.16.若点关于轴的对称点是,则的值是__________.17.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是_____.18.如图,已知直线经过原点,,过点作轴的垂线交直线于点,过点作直线的垂线交轴于点;过点作轴的垂线交直线于点,过点作直线的垂线交轴于点按此作法继续下去,则点的坐标为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,△ABC的各顶点都在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出A1,B1两点的坐标;(2)若△A1B1C1内有一点P,点P到A1C1,B1C1的距离都相等,则点P在()A.∠A1C1B1的平分线上B.A1B1的高线上C.A1B1的中线上D.无法判断20.(8分)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)如图,和中,,,,点在边上.(1)如图1,连接,若,,求的长度;(2)如图2,将绕点逆时针旋转,旋转过程中,直线分别与直线交于点,当是等腰三角形时,直接写出的值;(3)如图3,将绕点顺时针旋转,使得点在同一条直线上,点为的中点,连接.猜想和之间的数量关系并证明.22.(10分)春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?23.(10分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是;(3)将点C向x轴的负方向平移6个单位,它与点重合;(4)连接CE,则直线CE与y轴是什么位置关系;(5)点D分别到x、y轴的距离是多少.24.(10分)解分式方程:+=25.(12分)阅读材料:实数的整数部分与小数部分由于实数的小数部分一定要为正数,所以正、负实数的整数部分与小数部分确定方法存在区别:⑴对于正实数,如实数9.1,在整数9—10之间,则整数部分为9,小数部分为9.1-9=0.1.⑵对于负实数,如实数-9.1,在整数-10—-9之间,则整数部分为-10,小数部分为-9.1-(-10)=0.2.依照上面规定解决下面问题:(1)已知的整数部分为a,小数部分为b,求a、b的值.(2)若x、y分别是8-的整数部分与小数部分,求的值.(3)设x=,a是x的小数部分,b是-x的小数部分.求的值.26.如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.
参考答案一、选择题(每题4分,共48分)1、C【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.2、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【点睛】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.3、D【分析】根据三角形任意两边之和大于第三边进行判断即可.【详解】A:,故不能构成三角形;B:,故不能构成三角形;C:,故不能构成三角形;D:,故可以构成三角形;故选:D.【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.4、C【分析】表示出原计划和实际的生产时间,根据时间相等,可列出方程.【详解】解:设计划每天生产化肥x吨,列方程得=.故选:C.【点睛】本题考查分式方程的应用,关键是掌握工程问题的数量关系:工作量=工作时间×工作效率,表示出工作时间.5、A【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(-1,-2),故本选项正确;B、国际馆的坐标为(3,-1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(-7,-4),故本选项错误.故选A.【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.6、B【分析】根据最简二次根式的概念解答即可.【详解】∵,2,不能化简,不能化简.∴,是最简二次根式.故选B.【点睛】本题考查了最简二次根式的概念,解题的关键是正确理解最简二次根式的概念.7、C【分析】先设Rt△ABC的第三边长为,由于8是直角边还是斜边不能确定,故应分8是斜边或为斜边两种情况讨论.【详解】解:设的第三边长为,①当8为直角三角形的直角边时,为斜边,由勾股定理得,,此时这个三角形的周长;②当8为直角三角形的斜边时,为直角边,由勾股定理得,,此时这个三角形的周长,故选:C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8、D【分析】根据折线统计图中的数据及极差、中位数、平均数、众数的概念逐项判断数据是否正确即可.【详解】由图可得,极差:26-16=10℃,故选项A错误;这组数据从小到大排列是:16、18、20、22、24、24、26,故中位数是22℃,故选项B错误;平均数:(℃),故选项C错误;众数:24℃,故选项D正确.故选:D.【点睛】本题考查折线统计图及极差、中位数、平均数、众数,明确概念及计算公式是解题关键.9、D【分析】根据全等三角形的判定定理:SSS、SAS、AAS、ASA、Hl逐一判定即可.【详解】A选项,,,AC=AC,根据SSS可判定;B选项,平分,即∠DAC=∠BAC,根据SAS可判定;C选项,,根据Hl可判定;D选项,,不能判定;故选:D.【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10、A【分析】先由,得出动点在与平行且与的距离是的直线上,作关于直线的对称点,连接,则的长就是所求的最短距离.然后在直角三角形中,由勾股定理求得的值,即可得到的最小值.【详解】设中边上的高是.,,,动点在与平行且与的距离是的直线上,如图,作关于直线的对称点,连接,则的长就是所求的最短距离,在中,,,即的最小值为.故选:A.【点睛】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.11、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:2纳米=2×0.000000001米=0.000000002米=2×10-9米,故本题答案为:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5,则方差=[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C.【点睛】此题考查方差,掌握方差公式是解题关键.二、填空题(每题4分,共24分)13、【分析】根据二次根式的意义及性质,被开方数大于或等于0,据此作答.【详解】根据二次根式的意义,被开方数,解得.故函数的定义域是.故答案为:.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.掌握二次根式的概念和性质是关键.14、【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=1,故答案为:1.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.15、三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性故答案为:三角形具有稳定性.【点睛】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.16、-3【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出m、n的值,再计算m+n的值即可.【详解】∵点关于轴的对称点是,∴m=-2,n=-1,∴m+n=-2-1=-3.故答案为-3.【点睛】本题主要考查关于坐标轴对称的点的特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.17、1【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【详解】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得:AC=1.故答案为:1.【点睛】本题考查的知识点是角平分线的性质,根据角平分线的性质得出DE=DF是解此题的关键.18、(25,0)【分析】根据∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OMn与OM的关系,再根据点Mn在x轴上写出坐标,进而可求出点M2坐标.【详解】∵∠MON=60°,NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°-60°=30°,∴ON=2OM,OM1=2ON=4OM=22•OM,、同理,OM2=22•OM1=(22)2•OM,…,OMn=(22)n•OM=22n•2=22n+1,所以,点M2的坐标为(25,0);故答案为:(25,0).【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共78分)19、(1)详见解析,A1(-2,-5)B1(-5,-3);(2)A【分析】(1)利用轴对称的性质确定A1、B1、C1,然后顺次连接并直接读出A1、B1的坐标即可;(2)根据角平分线的定理即可确定答案.【详解】解:(1)△A1B1C1如解图所示,A1(-2,-5)B1(-5,-3);(2)由到角两边距离相等的点在角的平分线上,则A满足题意.故答案为A.【点睛】本题考查了作轴对称图形和角平分线定理,掌握轴对称的性质和角平分线定理是解答本题的关键.20、,1.【分析】原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=•+=+===,∵a与2、3构成△ABC的三边,且a为整数,∴1<a<5,即a=2,3,4,当a=2或a=3时,原式没有意义,则a=4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.21、(1);(2)22.5°、112.5°、45°;(3)AE+CF=.【分析】(1)根据勾股定理求出AB的长,可得CE,再用勾股定理可得FC的长度;(2)分别当CM=CN,MN=CN,MN=MC时,进行讨论即可;(3)连接AP,延长AE交CF于点Q,由四点共圆可知∠AEP=45°,从而推出A、E、Q共线,再由垂直平分线的判定可知AQ垂直平分CF,即得△ABF为等腰三角形,得到AP⊥BF,则△AEP为等腰直角三角形,得到AE和PE的关系,再根据EF和FC的关系得到AE、CF、BP三者的数量关系.【详解】解:(1),,,∴AB==5,∴EC=EF=3,∴FC==;(2)由题意可知△CMN中不会形成MN=MC的等腰三角形,①当CM=CN时,∠CNE=(180°-45°)=67.5°,∵∠NEC=90°,∴α=∠ACE=22.5°;②当CM=CN时,α=∠ACE,∵∠ACB=45°,∴∠CNM=∠CMN=×45°=22.5°,∵∠CEM=90°,∴∠ECM=67.5°,∴α=∠ACE=112.5°;③当CN=MN时,此时CE与BC共线,α=∠BCA=45°;综上:当是等腰三角形时,α的值为:22.5°、112.5°、45°.(3)AE+CF=连接AP,延长AE交CF于点Q,由题意可得:∠CEB=∠BAC=90°,∴A、E、C、B四点共圆,可得:∠AEB=∠ACB=45°,且∠CEQ=45°,∴∠EQC=90°,可知点A在CF的垂直平分线上,∴AC=AF=AB,∵点P是BF中点,∴AP⊥BF,∴△APE为等腰直角三角形,∴AE=,又∵△EFC为等腰直角三角形,∴CF=,∴+==AE+CF,∵BP=PF,∴AE+CF=.【点睛】本题是旋转综合题,涉及了勾股定理,等腰三角形的性质,垂直平分线的性质,旋转的性质,综合性较强,难度较大,作出辅助线是解本题的难点,是一道很好的压轴题.22、(1)对联的进价为8元/件,红灯笼的进价为18元/件;(2)商店最低打5折,才能使总的利润率不低于20%.【分析】(1)设对联的进价为x元,则红灯笼的进价为2.25x元,根据数量=总价÷单价结合用720元购进对联的数量比用540元购进红灯笼的数量多60件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设商店对剩下的商品打y折销售,根据利润=销售总额﹣进货成本结合总的利润率不低于20%,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴2.25x=18,答:对联的进价为8元/件,红灯笼的进价为18元/件;(2)设商店对剩下的商品打y折销售,依题意得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,整理得:240y≥1200,解得:y≥5,答:商店最低打5折,才能使总的利润率不低于20%.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)作图见解析;(2)1;(1)D;(4)平行;(5)点D到x轴的距离是5;点D到y轴的距离是1【解析】(1)根据点的坐标直接描点即可;(2)根据A点坐标可得出A点在x轴上,即可得出A点到原点的距离;
(1)根据点的平移的性质得出平移后的位置;
(4)利用图形性质得出直线CE与坐标轴的位置关系;
(5)利用D点的横纵坐标得出点D分别到x、y轴的距离.【详解】解:(1)描点如下:(2)如图所示:A点到原点的距离是1;故答案为:1(1)将点C向x轴的负方向平移6个单位,它与点D重合;故答案为:D(4)如图所示:CE∥y轴;(5)点D分别到x、y轴的距离分别是5和1.24、无解【分析】分式方程去分母化为整式方程,求出整式方程的解得到x的值,再检验是否为方程的解.【详解】解:+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度环保产业园场承包经营合同范本4篇
- 二零二五版飞机买卖及航空市场推广合同4篇
- 二零二五年度整体橱柜销售及售后保障合同范本4篇
- 2025年度橱柜定制与智能家居生态平台合同4篇
- 2025年度个人汽车转让及二手车鉴定评估及维修服务合同4篇
- 二零二五年度智慧家居系统定制与安装服务合同3篇
- 二零二五版留置车辆租赁合同借款协议4篇
- 二零二五年度高速公路隧道安防监控合同
- 二零二四全新时尚潮流服装店租赁与转让合同3篇
- 2025年度汽车配件销售及售后服务合同范本4篇
- 道路沥青工程施工方案
- 《田口方法的导入》课件
- 内陆养殖与水产品市场营销策略考核试卷
- 票据业务居间合同模板
- 承包钢板水泥库合同范本(2篇)
- DLT 572-2021 电力变压器运行规程
- 公司没缴社保劳动仲裁申请书
- 损伤力学与断裂分析
- 2024年县乡教师选调进城考试《教育学》题库及完整答案(考点梳理)
- 车借给别人免责协议书
- 应急预案评分标准表
评论
0/150
提交评论