版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.方程的根是()A.-1 B.0 C.-1和2 D.1和22.已知点A(,m),B(l,m),C(2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是(
)A. B. C. D.3.如图,在一个周长为10m的长方形窗户上钉上一块宽为1m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为()A.9m2 B.25m2 C.16m2 D.4m24.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.5.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.6.将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为()A. B.C. D.7.如图,已知在ΔABC中,DE∥BC,则以下式子不正确的是()A. B. C. D.8.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为(
)A. B. C. D.19.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.200810.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5 B.6 C.7 D.811.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点12.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.3二、填空题(每题4分,共24分)13.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.14.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.15.如图,是二次函数和一次函数的图象,观察图象写出时,x的取值范围__________.16.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.17.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.18.函数,其中是的反比例函数,则的值是__________.三、解答题(共78分)19.(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,则拉线CE的长为______________m(结果保留根号).20.(8分)如图,某居民楼的前面有一围墙,在点处测得楼顶的仰角为,在处测得楼顶的仰角为,且的高度为2米,之间的距离为20米(,,在同一条直线上).(1)求居民楼的高度.(2)请你求出、两点之间的距离.(参考数据:,,,结果保留整数)21.(8分)解下列两题:(1)已知,求的值;(2)已知α为锐角,且2sinα=4cos30°﹣tan60°,求α的度数.22.(10分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x24.(10分)某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数,写出众数和中位数;(3)估计该单位800名职工共捐书多少本?25.(12分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求该抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q的坐标.26.已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】用因式分解法课求得【详解】解:,,解得故选C【点睛】本题考查了用因式分解求一元二次方程.2、B【分析】根据抛物线的对称性进行分析作答.【详解】由点A(,m),B(l,m),可得:抛物线的对称轴为y轴,∵C(2,1),∴点C关于y轴的对称点为(-2,1),故选:B.【点睛】本题考查二次函数的图象和性质,找到抛物线的对称轴是本题的关键.3、D【解析】根据矩形的周长=(长+宽)×1,正方形的面积=边长×边长,列出方程求解即可.【详解】解:若设正方形的边长为am,
则有1a+1(a+1)=10,
解得a=1,故正方形的面积为4m1,即透光面积为4m1.
故选D.【点睛】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般.4、B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.5、A【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:.故选:B.【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7、D【分析】由DE∥BC可以推得ΔADE~ΔABC,再由相似三角形的性质出发可以判断各选项的对错.【详解】∵DE∥BC,∴ΔADE~ΔABC,所以有:A、,正确;B、由A得,即,正确;C、,即,正确;D、,即,错误.故选D.【点睛】本题考查三角形相似的判定与性质,根据三角形相似的性质写出有关线段的比例式是解题关键.8、A【解析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解.【详解】作AD⊥BC于点D,则AD=5,BD=5,∴AB===5,∴cos∠B===.故选A.【点睛】本题考查锐角三角函数的定义.9、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可.【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选C.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.11、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.12、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:
∵AB=BC,
∴,
∴OB⊥AC,
∴OB平分∠ABC,
∴∠ABO=∠ABC=×120°=60°,
∵OA=OB,
∴∠OAB=60°,
∵AD为直径,
∴∠ABD=90°,
在Rt△ABD中,AB=AD=3,
∴BD=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.二、填空题(每题4分,共24分)13、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,
∴正方形ABCD的面积=3×3×=1,
故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.14、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.15、.【解析】试题分析:∵y1与y2的两交点横坐标为-2,1,当y2≥y1时,y2的图象应在y1的图象上面,即两图象交点之间的部分,∴此时x的取值范围是-2≤x≤1.考点:1、二次函数的图象;2、一次函数的图象.16、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).
连接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC为半径,
∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.17、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。18、【分析】根据反比例函数的定义知m1-5=-1,且m-1≠0,据此可以求得m的值.【详解】∵y=(m-1)x
m1−5是y关于x的反比例函数,∴m1-5=-1,且m-1≠0,∴(m+1)(m-1)=0,且m-1≠0,∴m+1=0,即m=-1;故答案为:-1.【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx-1(k≠0)的形式.三、解答题(共78分)19、【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】解:过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,
∴CH=AH•tan∠CAH=6tan30°=(米),∵DH=1.5,
∴CD=2+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=,答:拉线CE的长约为米,故答案为:.【点睛】本体考查了解直角三角形的应用--仰角俯角问题.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.20、(1)居民楼的高约为22米;(2)、之间的距离约为48米【分析】(1)过点作,垂足为,设为在中及中,根据三角函数即可求得答案;(2)方法一:在中,根据,即可求得AE的值.方法二:在中,根据,即可求得AE的值.【详解】(1)如图,过点作,垂足为,∴四边形为矩形,∴,.设为.在中,,∴,∴.在中,,,∵,∴,∴.答:居民楼的高约为22米.(2)方法一:由(1)可得.在中,,∴,∴,即、之间的距离约为46米.方法二:由(1)得.在中,,∴,∴,即、之间的距离约为48米.(注:此题学生算到46或48都算正确)【点睛】本题考查了解直角三角形的应用,构造直角三角形,得出三角函数的关系是解题的关键.21、(1)6;(2)锐角α=30°【分析】(1)根据等式,设a=3k,b=4k,代入所求代数式化简求值即可;(2)由cos30°=,tan60°=,化简即可得出sinα的值,根据特殊角的三角函数值即可得.【详解】解:(1)∵,∴设a=3k,b=4k,∴==6,故答案为:6;(2)∵2sinα=4cos30°﹣tan60°=4×﹣=,∴sinα=,∴锐角α=30°,故答案为:30°.【点睛】本题考查了化简求值,特殊角的三角函数值的应用,掌握化简求值的计算是解题的关键.22、(1);(2).【分析】(1)根据M点的横坐标为1,求出k的值,得到反比例函数的解析式;(2)求出x=2,x=5时y的取值,再根据反比例函数的增减性求出y的取值范围.【详解】(1)正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为.,,反比例函数的解析式为;(2)在反比例函数中,当,当,在反比例函数中,,当时,随的增大而减小,当时,反比例函数的取值范围为.【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.23、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣2x试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣2x∴点M(x,y)在函数y=﹣2x的图象上的概率为:2考点:列表法或树状图法求概率.24、(1)补全图形见解析;(2)平均数是6本,众数是6本,中位数是6本.(3)该单位800名职工共捐书有4800本.【分析】(1)根据总数和统计数据求解即可;(2)根据平均数,众数和中位数定义公式求解即可;(3)根据已知平均数乘以员工总数求解即可.【详解】解:(1)D组人数=30﹣4﹣6﹣9﹣3=8人,补图如下:.(2)平均数是:=6(本),众数是6本,中位数是6本.(3)∵平均数是6本,∴该单位800名职工共捐书有6×800=4800本.【点睛】本题主要考查了数据统计中的平均数,众数和中位数的问题,熟练掌握其定义与计算公式是解答关键.25、(1);(2)存在点P,使得四边形PAOC的周长最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第3章 第3节 水资源(新教学实录)2023-2024学年八年级上册地理(人教版)
- 山东省郯城县郯城街道初级中学初中信息技术《图像处理》教学实录2
- 2024版二手车交易居间服务标准化合同
- 2024-2025学年新教材高中政治 第4单元 国际组织 第9课 第2框 中国与新兴国际组织教学实录 新人教版选择性必修1
- 2024年度高端商务车辆租赁及维护服务合同3篇
- 按月还息抵押借款合同
- 2024版房产买卖居间合同专业版3篇
- 农村鱼塘租赁合同
- 2024年树木批发销售协议规范格式一
- 2024年中国柴油机油箱浮标市场调查研究报告
- GSP对药品经营企业计算机系统的要求
- 课堂-可以这么有声有色
- 京瓷哲学培训课件
- 天猫电子商务案例分析
- 2022年1201广东选调生考试《综合行政能力测验》真题
- 有机肥料采购项目售后服务方案
- 综合实践活动(1年级下册)第3课时 感恩卡设计与制作-课件
- 2023河南省科学院招聘144人笔试参考题库(共500题)答案详解版
- (完整版)小学生英语百科知识竞赛题及答案
- 肥料、农药采购服务方案(技术方案)
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
评论
0/150
提交评论