版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列计算正确的是().A. B. C. D.2.(2015秋•孝感月考)下列各式从左到右的变形是因式分解的是()A.(a+5)(a﹣5)=a2﹣25B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2﹣1=a2+2ab+b2﹣1D.a2﹣4a﹣5=a(a﹣4)﹣53.如图,在平行四边形ABCD中,∠ODA=90°,AC=10,BD=6,则AD的长为()A.4 B.5 C.6 D.84.无理数2﹣3在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间5.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个6.下列四个手机软件图标中,属于轴对称图形的是()A. B. C. D.7.下列因式分解正确的是()A. B.C. D.8.如图,“士”所在位置的坐标为,“相”所在位置的坐标为,那么“炮”所在位置的坐标为()A. B. C. D.9.如图,已知的六个元素,其中、、表示三角形三边的长,则下面甲、乙、丙、丁四个三角形中与不一定相似的图形是()A.甲 B.乙 C.丙 D.丁10.在平面直角坐标系中,一次函数y=kx﹣6(k<0)的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.等腰三角形ABC中,∠A=40°,则∠B的度数是___________.12.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=________________°.13.如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图2所示,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,直线AB即为所求,则小颖的作图依据是________.14.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是=35.5,=41,从操作技能稳定的角度考虑,选派__________参加比赛;15.若,则的值为_____.16.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是______.17.已知,.则___________,与的数量关系为__________.18.式子在实数范围内有意义的条件是__________.三、解答题(共66分)19.(10分)已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.20.(6分)已知在平面直角坐标系中有,,三点,请回答下列问题:(1)在坐标系内描出以,,三点为顶点的三角形.(2)求的面积.(3)画出关于轴对称的图形21.(6分)如图,已知直线,直线,与相交于点,,分别与轴相交于点.(1)求点P的坐标.(2)若,求x的取值范围.(3)点为x轴上的一个动点,过作x轴的垂线分别交和于点,当EF=3时,求m的值.22.(8分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.23.(8分)证明“角的内部到角的两边的距离相等的点在角的平分线上”.24.(8分)如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.(1)求证:△ABQ△CAP;(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC=度.(直接填写度数)25.(10分)如图,把、两个电阻并联起来,线路上的电流为,电压为,总电阻为,则,其中,,,满足关系式:.当,,时,求的值.26.(10分)如图,点A、F、C、D在同一条直线上,已知AC=DF,∠A=∠D,AB=DE,求证:BC∥EF
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平方根、算术平方根及立方根直接进行排除选项.【详解】A、,故正确;B、,故错误;C、,故错误;D、,故错误;故选A.【点睛】本题主要考查平方根、算术平方根及立方根,熟练掌握平方根、算术平方根及立方根是解题的关键.2、B【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.考点:因式分解的意义.3、A【分析】根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【详解】解:∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=AC=5,OB=OD=BD=3,∵∠ODA=90°,∴在Rt△ADO中,由勾股定理可知,,故选:A.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.4、B【分析】首先得出2的取值范围进而得出答案.【详解】∵2=,∴6<<7,∴无理数2-3在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.5、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;
③想办法证明BD=AD即可;
④想办法证明∠BAD=45°即可解决问题.【详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵
∴,故①②正确,当时,∠DAC=∠C,
∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,
∴∠BAD=∠ABD,
∴BD=AD,
∵AB=AD,
∴AB=AD=BD,
∴△ABD是等边三角形,故③正确,
当时,∠ABD=∠ADB=67.5°,
∴∠BAD=180°−2×67.5°=45°,
∴∠DAE=∠BAD=45°,
∵AB=AE,AD=AD,
∴△BAD≌△EAD(SAS),∴,故④正确.
故选:D.【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.6、B【分析】根据轴对称图形的概念:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合逐一进行判断即可得出答案.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误;故选:B.【点睛】本题主要考查轴对称图形,会判断轴对称图形是解题的关键.7、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】A、,故此选项错误;B、,无法分解因式,故此选项错误;C、,无法分解因式,故此选项错误;D、,正确,故选D.【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.8、B【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B.【点睛】本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.9、A【分析】根据相似三角形的判定方法对逐一进行判断.【详解】解
:A.满足两组边成比例夹角不一定相等,与不一定相似,故选项正确;
B.满足两组边成比例且夹角相等,与相似的图形相似,故选项错误;
C.满足两组角分别相等,与相似的图形相似,故选项错误;
D.满足两组角分别相等,与相似的图形相似,故选项错误
.
故选A.【点睛】本题考查了相似三角形的判定方法,关键是灵活运用这些判定解决问题.10、B【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【详解】∵一次函数y=kx﹣6中,k<0∴直线从左往右下降又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选:B.【点睛】本题考查了一次函数的图象问题,掌握一次函数图象的性质是解题的关键.二、填空题(每小题3分,共24分)11、40°或70°或100°【分析】等腰三角形△ABC可能有三种情况,①当∠A为顶角时,②当∠B为顶角,②当∠C为顶角时,根据各种情况求对应度数即可.【详解】根据题意,当∠A为顶角时,∠B=∠C=70°,当∠B为顶角时,∠A=∠C=40°,∠B=100°,当∠C为顶角时,∠A=∠B=40°,故∠B的度数可能是40°或70°或100°,故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握.12、1.【解析】试题分析:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=1°,故答案为1.点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案.13、内错角相等,两直线平行【分析】首先对图形进行标注,从而可得到∠2=∠2,然后依据平行线的判定定理进行判断即可.【详解】解:如图所示:由平移的性质可知:∠2=∠2.又∵∠2=∠2,∴∠2=∠2.∴EF∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定、平移的性质、尺规作图,依据作图过程发现∠2=∠2是解题的关键.14、甲【分析】根据方差的意义即可得到结论.【详解】解:∵S甲2=35.5,S乙2=41,乙的方差大于甲的方差,
∴甲的成绩稳定∴选甲参加合适.
故答案为:甲.【点睛】本题考查了方差,牢记方差的意义解决本题的关键.15、1【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵,∴;故答案为1.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.16、2【解析】试题分析:依题意得,2a-1+(-a+2)=0,解得:a=-1.则这个数是(2a-1)2=(-3)2=2.故答案为2.点睛:本题考查了平方根的性质.根据正数有两个平方根,它们互为相反数建立关于a的方程是解决此题的关键.17、4【分析】由同底数的除法可得:从而可得:的值,由,可得可得从而可得答案.【详解】解:,,故答案为:.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.18、【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题(共66分)19、【分析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1+y2,再把当x=2时,y1=4,y=2代入y关于x的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【详解】根据题意,设,.,,当时,,,,,,.【点睛】本题考查了正比例函数及反比例函数的定义及用待定系数法求函数的解析式的知识点,只要根据题意设出函数的关系式,把已知对应值代入即可.20、(1)见解析;(2)5;(3)见解析.【分析】(1)先找出A、B、C三点的坐标,依次连接即可得到△ABC;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接即可;【详解】解:(1)以,,三点为顶点的△ABC如下图所示;(2)依题意,得轴,且,∴;(3)关于轴对称的图形,如下图所示.【点睛】本题考查了根据轴对称作图以及点的坐标的表示方法.作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;
③按原图形中的方式顺次连接对称点.21、(1)P(-2,1);(2)-3<x<-2;(3)m=-3或m=-1.【分析】(1)由点P是两直线的交点,则由两方程的函数值相等,解出x,即可得到点P坐标;(2)由,联立成不等式组,解不等式组即可得到x的取值范围;(3)由点D的横坐标为m,结合EF=3,可分为两种情况进行讨论:点D在点P的左边;点D在点P的右边,分别计算,即可得到m的值.【详解】解:(1)P点是直线l1与直线l2的交点,可得:2x3=x+3,解得:x=2,∴y=1;∴P点的坐标为:(2,1);(3),,解得:;;(3)∵点D为(m,0),根据题意可知,则E(m,2m3);F(m,m+3),第一种情况:点D在点P的左边时,此时点E在点F的上方;∴,;第二种情况:点D在点P的右边时,此时点E在点F的下方;∴,;∴m的值为:或.【点睛】本题考查了一次函数的图像和性质,以及一次函数与一元一次不等式的联系,解题的关键是熟练掌握一次函数的性质,第三问要注意利用分类讨论的思想进行解题.22、-1【分析】根据题意,由多边形的性质,分析可得答案.【详解】依题意有n=4+3=7,m=6+2=8,t=63÷7=9,则(n﹣m)t=(7﹣8)9=﹣1.【点睛】本题考查了多边形的性质,从n边形的一个顶点出发,能引出(n﹣3)条对角线,一共有条对角线,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.这些规律需要学生牢记.23、见解析.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质进行证明.【详解】已知:如图,PE⊥OA于E,PF⊥OB于F,且PE=PF,
求证:点P在∠AOB的平分线上.
证明:在Rt△POE和Rt△POF中,
∴Rt△POE≌△RtPOF,
∴∠EOP=∠FOP,∴OP平分∠AOB
∴点P在∠AOB的平分线上.【点睛】本题考查的是角平分线的判定的证明,知晓直角三角形全等的判定定理是解题的关键.这是文字证明题,解题有三个步骤:一是分清题设和结论,画出图形;二是结合图形写出已知、求证;三是写出证明过程.24、(1)见解析;(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变,∠QMC=60°,理由见解析;(3)120.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;(2)由(1)可知△ABQ≌△CAP,所以∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;(3)先证△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;【详解】(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60∘,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律行业客服工作总结专业解决法律问题
- 环保设备行业采购工作总结
- 音乐行业安全生产工作总结
- 分析行业数据解读培训总结
- 咨询行业中战略顾问的工作表现概述
- 【八年级下册历史】第6课 艰难探索与建设成就 同步练习
- 创新实验资源共享合同(2篇)
- 2024社团规章制度(30篇)
- 《政府采购业务知识》课件
- 2024年福建省《辅警招聘考试必刷500题》考试题库带答案(突破训练)
- (高速公路)工程施工便道施工方案-
- 低压配电电源质量测试记录
- 安徽省水利工程质量检测和建筑材料试验服务收费标准
- 2022课程标准解读及学习心得:大单元教学的实践与思考
- OA协同办公系统运行管理规定
- 公安警察工作汇报PPT模板课件
- 直肠癌个案护理范文结肠癌个案护理.doc
- 某小区建筑节能保温工程监理实施细则
- 污水处理中常用的专业术语
- 石英砂过滤器说明书
- 外市电引入工程实施管理要求(重要)
评论
0/150
提交评论