版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Howbigdatacanhelpsmalldata?DepartmentofComputerScienceUniversityofSouthernCaliforniaEdgecasestudy“常常会遇到偶发的⼤QuanFinance“左尾”/“右尾”没有⾜够多的数据TimescalesShort-termWhichschool?TimescalesShort-termWhichschool?Extracurricularactivities:sports,arts,etc?Mid-termWhichuniversity?Whichspeciality?Long-termWhatkindofcareerpath?Whatelsemakesthishard?IndividualdifferencesGeneticallyEnvironmentallyHarshconstraintsOne-shotgameCostlytorecoverfrommistakes[Bill&MelindaGatesFoundationonPersonalizedLearning]CNNonPersonalizedLearning6]CanyoubuildamodelofSadly,Sadly,not100%yetIndividualizedmodelsneedindividual-specificdataTheamountofdataisfundamentallylimited,hencebeingSmall.MostmodernlearningalgorithmsrequireBigDataabouttheindividual.Sadly,not100%yetIndividualizedmodelsneedindividual-specifiSadly,not100%yetIndividualizedmodelsneedindividual-specificdataTheamountofdataisfundamentallylimited,hencebeingSmall.MostmodernlearningalgorithmsrequireBigDataabouttheindividual.you.CanyoubuildamodelofSadly,Sadly,not100%yetIndividualizedmodelsneedindividual-specificdataTheamountofdataisfundamentallylimited,hencebeingSmall.MostmodernlearningalgorithmsrequireBigDataabouttheindividual.you.rI3LearningsettingsMulti-tasklearningDomainadaptationZero-shotlearningPrimaryapplicationfocusComputervision3LearningsettingsMulti-tasklearningDomainadaptationZero-shotlearningPrimaryapplicationfocusComputervision3LearningsettingsMulti-tasklearningDomainadaptationZero-shotlearningPrimaryapplicationfocusComputervision3LearningsettingsMulti-tasklearningDomainadaptationZero-shotlearningPrimaryapplicationfocusComputervision3LearningsettingsMulti-tasklearningDomainadaptationZero-shotlearningPrimaryapplicationfocusComputervisionVignette1Multi-taskLearning(MTL)“众人拾柴高”w1w2w3w4w1w2w3w4ProblemsettingMtasks,eachwithitsowndataNeedtofindsolutionsforallofthemTraditionalframeworkforsupervisedlearningSolveeachtaskindependentlyargmin`(Dm;wm)+λmR(wm)wmw1w2w1w2w3w4MainideaLearnjointlymultiplerelatedtasksForceknowledgesharingCombinesmalldataintobigdataBenefitsImprovegeneralizationperformanceRequirelessamountofdataWorksinbothdeepandshallowlearningmodelsw1,w2,···,wMMX`(Dm;wm)+λR(w1,w2,···,wM)m=1eeetalArgyriouetal08,Daumé,09..…]MX`(Dm;wm)+m=1MX`(Dm;wm)+m=1w1,w2,···,wMExploitingtaskrelatednessEncodepriorknowledgebyselectingtheregularizerConstrainthehypothesisspaceforalltasksChoicesofregularizerAllparametersaresimilartoeachotherParametersshouldhavesimilarsparsitypatterns.λλR(w1,w2,···,wM)ww1ww2ww3ww4D23InputvisualfeatureD[objectcategoriesandattributes,CVPR,2011]haredfeaturesxxxxD23InputvisualfeatureD[objectcategoriesandattributes,CVPR,2011]haredfeaturesxxxxwhitespotspolarbearwhitespotsject yaAAttributesclassifier classject yaAAttributesclassifier 911912 u1911912 u1u2u3MA11VisualfeaturespaceAnalogiesleopard:cat=wolf:dogleopard:tiger=horse:zebraRRegularization--------==SemanticEmbeddingSpace[Analogy-preservingembedding,ICML,2013]NBSharingontologiesNIPS2)]NotalltasksarebeneficialNotalltasksarebeneficialNotalltasksarebeneficialNotalltasksarebeneficialw1Howtodiscovergroupsofrelatedsubtasks?“Learningwithwhomtow1Howtodiscovergroupsofrelatedsubtasks?“Learningwithwhomtoshare”(ICML,2011)Group1w2“Resistingthetemptationtoshare”(CVPR,2014)Whythisisuseful?w3LearninginnoisytaskdataLearningfromasetofirrelevanttasksEx:compbio,noisylabelsGroup2w4NotalltasksVignette2DomainadaptationClassificationtask:givenafaceimage,determinemanorwoman?CollectalotoflabeledimagestrainingtaanwomanxxxxInferaclassificationboundary22 xxClassifyontestimagex2xxxClassifyontestimagex2xccessSharedstatisticalproperties,usefulforclassificationSharedstatisticalproperties,usefulforclassificationtell-talefeature:lengthofhairtrainingdatatestdataMismatchbetweentrainingandtestingtrainingdatatestdataunseendataMismatchbetweentrainingandtesting“lengthofhair”nolongerefective!trainingdatatestdataunseendataUnrealistic,oversimplifyingassumptionsLearningenvironmentisstationaryTraining,testingandfuturedataaresampledini.i.dfromthesamedistributionWorkswellinacademic/well-controlledsettings.Inreal-life,Learningenvironmentchanges.Training,testingandfuturedataaresampledfromdifferentdistributions.Wesufferfrompoorcross-distributiongeneralization,whereaccuracyfordisparatedomainsdropssignificantly.ComputervisionObjectrecognition:train&testondifferentdatasetsVehiclepedestrianavoidancesystems:train&testindifferentvehicular/cityenvironmentsNaturallanguageprocessingSyntacticparsing:trainonbusinessarticlesbutappliedtomedicaljournalsSpeechrecognition:trainonnativespeakersbutappliedtoaccentedvoicesChallengesManyexogenousfactorsaffectvisualappearances:pose,illumination,camera’squality,etc.Collectingdataunderallpossiblecombinationsofthosefactorsisexpensive.Labelingthosedataisevenmorecostly.CaltechCaltech-256mAmazonDSLRExampleimagesfrom4domainsinourempiricalstudiesAccuracyAccuracy[Anonymoussource,2014]EffectofusingbiggerdatasetsforadaptationlargersourceAmazonWebcamImageNetAdaptedAmazonAdaptedImageNetHowtoadapt?linearsubspacesDomain-invariantfeaturesTheoreticalmotivationExploitintrinsicstructuresLearnkernelsdiscriminativeclusteringGrasGrassmannmanifoldofsubspacesSourcedomainGeodesicflowcapturesdomain-invariantrepresentation(forvisualrecognition)Targetdomain(ICML13,NIPS13)[Ben-Davidetal’06,Blitzeretal’06,DaumeIII’07,Panetal,09,SharedrepresentationExistenceofa(latent)featurespaceThemarginalsofsourceandtargetsarethesame(orsimilar)inthisspaceExistasingleclassifierworkswellonbothdomainseT[h]<eS[h]+A(PS,PT)+infh2H[eT[h]+eS[h]]howwellahowwellasingleclassifiercandodistributionsaresimilarGrassmannmanifoldofsubspacesTargetdomainGeodesicflowcapturesGrassmannmanifoldofsubspacesTargetdomainGeodesicflowcapturesdomain-invariantSourcedomainrepresentation(forvisualrecognition)PRDomain-invariantfeaturesParameterizedaslinearkernelmappingoforiginalfeaturesConstructedtominimizediscrepancybetweentwodomainsModeldomainswithsubspacesComputediscrepancyasdifferencesbetweensubspacesGG(d,D)Noadaptation SGF(Gopalanetal,ICCV2011)GeodesicFlowkernel(ours)DAC45004500Geodesicflowkernel(GFK)LandmarkC-->AA-->WW-->CD-->AC-->DA-->CVignette3Zero-shotlearningClassicalmachinelearningframeworkMultiwayclassificationLabelingspaceisdeterminedapriorAlargenumberofannotatedtrainingsamplesforeveryclassChallengesforrecognitioninthewildLabelingspacegrowsarbitrarilylargewithemergenceofnewclassesCollectingdatafornewclassesisnotalwayscost-effectiveSomeclassesdonothaveenoughlabeledorzerolabeledimages“cat”“flower”“bench”“dog”“bear”“bird”Numberofspecies(total:1,589,361)Birds:9956Fish:30,000Mammals:5,416Reptiles:8,240Insects:950,000Corals:2,175Plants:297,326Mushrooms:16,000“Skywalker”gibbonObjectsSimilarly,inImageNetTwotypesofclassesSeen:withalotoflabeledexamplesUnseen:withoutanyexamplesCatHorse ?FiguresfromDerekHoiem’sslidesWhatisit:bear-like,withblackandwhitestripeandoftenwithbamboo?ClasslabelsClasslabels≠discretenumbersNeedtoassignsemanticmeaningstoclasslabelsNeedtodefinerelationshipsamongclasslabelsKeyassumptionsThereisacommonsemanticspacesharedbybothtypesofclassesConfigurationoftheembeddingsenable“transfer”.seeseenclassuneenclassSemanticEmbeddings•Attributes(Farhadietal.09,Lampertetal.09,Parikh&Grauman11,…)•Wordvectors(Mikolovetal.13,Socheretal.13,Fromeetal.13,…)•Word•Wordvectors(Mikolovetal.13,Socheretal.13,Fromeetal.13,…)SemanticEmbeddings•Attributes(Farhadietal.09,Lampertetal.09,Parikh&Grauman11,…)ngSeenObjectsnObjectSeenObjectsnObjectBrownMuscularHasSnoutHasMane(likehorse)HasSnout(likedog)HowHowtoeffectivelyconstructamodelforzebra?FiguresfromDerekHoiem’sslidesTrainingSeenclassesandtheirsemanticembeddingsS={1,2,···,S}AS={a1,a2,···,aS}AnnotatedtrainingsamplesD={(xn,yn)}=1GoalUnseenclassesandtheirsemanticembeddings八={S+1,···,S+U}AU={aS+1,aS+2,···,aS+U}Classifier:f:x!y2八ardaCardinal2v2w3311ModelspacewvvwardaCardinal2v2w3311Modelspacewvvwb1a1b2SemanticspaceSemanticspaceb3aSynthesizedclassifiersforzero-shotlearningSemanticrepresentationsSemanticembeddingspaceVisualfeaturesaGadwallaCedarWaxwinga(·)=PCAaHouseWren((au)forNNclassificationortoimproveexistingZSLapproaches:classexemplarcat01.11b1a1penguin−.2cat01.11b1a1penguin−.2Modelspace2−1.0(0.4A(−0.3Av1v2b2a3 Semanticspace3abBBC(−0.4AIntroducephantomclassesasbasesLearnbases’semanticembeddingsaswellasmodelsforbasesGraphsstructuresencode“relatedness”DefinehowclassesarerelatedinthesemanticembeddingspaceDefinehowclassesarerelatedinthemodelspaceDatasetsDatasetsTotal#AwA†CUB‡ClassificationaccuracyAwACUBSUNImageNet
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学信息工程(信号与线性系统)试题及答案
- 2025年高职电子技术应用(电路调试)试题及答案
- 2025年大学机器人控制技术(编程)试题及答案
- 山东省德州市2025-2026学年高一上学期期末语文试题(含答案)
- 撒切尔介绍教学课件
- 2026年莆田市秀屿区市场监督管理局关于招聘食品安全协管员的备考题库及答案详解一套
- 【初中语文】《曹刿论战》知识点梳理+统编版语文九年级下册
- 2026年研究生院学位办校内招聘职员备考题库有答案详解
- 化学安全技术培训课件
- 2026年保密纪律与警务信息安全管理面试题含答案
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库及答案1套
- 河道清淤作业安全组织施工方案
- 2026年七台河职业学院单招职业技能测试题库附答案
- 2021海湾消防 GST-LD-8318 紧急启停按钮使用说明书
- 烟花爆竹零售经营安全责任制度
- 2023年和田地区直遴选考试真题汇编含答案解析(夺冠)
- ICG荧光导航在肝癌腹腔镜解剖性肝切除中的应用2026
- 江苏徐州泉丰建设工程有限公司招聘笔试题库2025
- 质量、环境与职业健康安全管理方针与目标
- 学堂在线 雨课堂 学堂云 批判性思维-方法和实践 章节测试答案
- 语音厅新人培训课件
评论
0/150
提交评论