河北省承德市2022年数学八上期末综合测试试题含解析_第1页
河北省承德市2022年数学八上期末综合测试试题含解析_第2页
河北省承德市2022年数学八上期末综合测试试题含解析_第3页
河北省承德市2022年数学八上期末综合测试试题含解析_第4页
河北省承德市2022年数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.PM2.5是指大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.2.5×10-5 B.2.5×10-6 C.2.5×10-72.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形 B.3个正方形和2个正三角形C.1个正五边形和1个正十边形 D.2个正六边形和2个正三角形3.如图,在中,,D是AB上的点,过点D作

交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③ B.①②④ C.②③④ D.①②③④4.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=15.如图,是线段上的两点,.以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧,两弧交于点,连结,则一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形6.下列图案中不是轴对称图形的是()A. B. C. D.7.小王每天记忆10个英语单词,x天后他记忆的单词总量为y个,则y与x之间的函数关系式是()A.y=10+x B.y=10x C.y=100x D.y=10x+108.下列图象不能反映y是x的函数的是()A. B.C. D.9.当一个多边形的边数增加时,它的内角和与外角和的差()A.增大 B.不变 C.减小 D.以上都有可能10.如果,那么代数式的值为()A.-3 B.-1 C.1 D.3二、填空题(每小题3分,共24分)11.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.12.9的平方根是_________.13.等腰三角形的一个角是72º,则它的底角是______________________.14.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.15.点(2,1)到x轴的距离是____________.16.因式分解:__________.17.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.18.如图,直线l1:y=﹣x+b与直线l2:y=mx+n相交于点P(﹣2,1),则不等式﹣x+b<mx+n的解集为_____.三、解答题(共66分)19.(10分)计算:(1)﹣(2)(-1)0﹣|1﹣20.(6分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)21.(6分)如图1,在中,,平分,且点在的垂直平分线上.(1)求的各内角的度数.(2)如图2,若是边上的一点,过点作直线的延长线于点,分别交边于点,的延长线于点,试判断的形状,并证明你的结论.22.(8分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.23.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.24.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?25.(10分)已知a,b,c满足=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.26.(10分)如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选C.【考点】科学记数法—表示较小的数.2、D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。【详解】A.2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B.3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C.1个正五边形和1个正十边形:108°+144°=252°,故不符合;D.2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【点睛】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.3、B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.4、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),

∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.5、B【分析】先根据题意确定AC、BC、AB的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC2=64,BC2=36,AB2=100,∴AC2+BC2=AB2∴一定是直角三角形.故选:B.【点睛】本题主要考查了勾股定理逆定理的应用,根据题意确定AC、BC、AB的长是解答本题的关键.6、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【分析】根据总数=每份数×份数列式即可得答案.【详解】∵每天记忆10个英语单词,∴x天后他记忆的单词总量y=10x,故选:B.【点睛】本题考查根据实际问题列正比例函数关系式,找到所求量的等量关系是解决问题的关键.8、C【详解】解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.9、A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n-2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n-2)-360=180n-720∵180>0∴多边形的内角和与外角和的差会随着n的增大而增大故选A.【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.10、D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.12、±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13、【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【详解】解:①当顶角是72°时,它的底角=(180°72°)=54°;

②底角是72°.

所以底角是72°或54°.

故答案为:72°或54°.【点睛】此题主要考查了学生的三角形的内角和定理及等腰三角形的性质的运用.14、(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),

∴OA=2,

又∵OA=2OB,

∴OB=1,

∵点B在y轴上,

∴点B的坐标为(0,1)或(0,-1),

故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】解:点(2,1)到x轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.16、【分析】因为-6=-3×2,-3+2=-1,所以可以利用十字相乘法分解因式即可得解.【详解】利用十字相乘法进行因式分解:.【点睛】本题考查了分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法与十字相乘法与分组分解法分解.17、【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.【详解】设,其中为整数,,则,,原方程化为:,.,即,,为整数,、.当时,,此时,为非零实数,舍去;当时,此时.故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.18、x>﹣1【分析】根据一次函数图象的位置关系,即可得到不等式的解集.【详解】观察图象得,当x>﹣1时,﹣x+b<mx+n,∴不等式﹣x+b<mx+n的解集为:x>﹣1.故答案为:x>﹣1.【点睛】本题主要考查求不等式的解,掌握一次函数与一元一次不等式的关系,是解题的关键.三、解答题(共66分)19、(1)0;(2)5﹣【分析】(1)先求算术平方根与立方根,再进行减法运算,即可;(2)先求零次幂,绝对值和算术平方根,再进行加减法运算,即可求解.【详解】(1)原式=2﹣2=0;(2)原式=1+(1﹣)+3=5﹣.【点睛】本题主要考查实数的混合运算,掌握求算术平方根,立方根,零次幂是解题的关键.20、(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【点睛】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.21、(1),,;(2)是等腰三角形,证明见解析.【分析】(1)根据等腰三角形的性质和垂直平分线的性质可得,设∠,利用三角形的内角和定理列出方程即可求出x的值,从而求出的各内角的度数;(2)利用ASA即可证出,从而得出结论.【详解】解:(1)∵,∴.∵平分,∴.∵点在的垂直平分线上,∴,∴,∴.设∠,∴,∴,∴,∴,,.(2)是等腰三角形.证明:∵平分,∴.∵,∴.在△EBH和△NBH中∴,∴,∴是等腰三角形.【点睛】此题考查的是等腰三角形的性质及判定、垂直平分线的性质、三角形的内角和定理和全等三角形的判定及性质,掌握等边对等角、等腰三角形的定义、垂直平分线的性质、三角形的内角和定理、全等三角形的判定及性质和方程思想是解决此题的关键.22、1.【分析】首先根据立方根的概念可得3a+b的值,接着估计的大小,可得b的值;进而可得a、b的值,进而可得a+b;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a+b=8;又∵1<<3,

∴b=1,∴3a+1=8;

解得:a=1

∴a+b=1+1=4,

∴a+b的算术平方根为1.故答案为:1.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23、∠CMA=35°.【解析】根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.24、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得

,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论