




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25° B.20° C.80° D.100°2.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.103.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件4.下列方程中,是关于x的一元二次方程的为()A. B. C. D.5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°6.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.7.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.58.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值39.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.10.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为()A.12 B.7 C.6 D.411.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为()A.1 B. C. D.212.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.二、填空题(每题4分,共24分)13.计算:2sin245°﹣tan45°=______.14.小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.15.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若2<m<5,则a的取值范围是_____.16.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.17.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值__________.18.若一元二次方程有两个不相等的实数根,则k的取值范围是.三、解答题(共78分)19.(8分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.20.(8分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).22.(10分)已知二次函数.(1)求证:不论m取何值,该函数图像与x轴一定有两个交点;(2)若该函数图像与x轴的两个交点为A、B,与y轴交于点C,且点A坐标(2,0),求△ABC面积.23.(10分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若PA=3,PB=4,∠APB=150°,求PC的长度.24.(10分)如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.25.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.26.解方程:.如图,在平面直角坐标系中,的顶点坐标分别为.以点为位似中心画出的位似图形,使得与的位似比为,并写出点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.【点睛】本题考查圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对圆心角的一半.2、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.3、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【解析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(1)未知数的最高次数是1;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax1+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.,是分式方程,B.,正确,C.,是二元二次方程,D.,是关于y的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.5、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6、B【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选B.7、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.8、A【解析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.10、C【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【详解】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b.∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),两边平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故选:C.【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键.11、C【分析】过O作于H,得到,连接OB,由为内接等边三角形,得到,求得,根据垂径定理和三角形的中位线定理即可得到结论.【详解】解:过作于,,连接,为内接等边三角形,,,,,,,,,,故选:.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理.12、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.二、填空题(每题4分,共24分)13、0【解析】原式==0,故答案为0.14、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子,∴射中靶子的频率为=0.9,∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15、<a或﹣5<a<﹣1.【分析】首先可由二次函数的表达式求得二次函数图象与x轴的交点坐标,可知交点坐标是由a表示的,再根据题中给出的交点横坐标的取值范围可以求出a的取值范围.【详解】解:∵y=ax1+(a1﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x=﹣a或x=,∴抛物线与x轴的交点为(﹣a,0),(,0),由题意函数与x轴的一个交点坐标为(m,0)且1<m<5,∴当a>0时,1<<5,即<a;当a<0时,1<﹣a<5,即﹣5<a<﹣1;故答案为<a或﹣5<a<﹣1.【点睛】本题综合考查二次函数图象与与x轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.16、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【点睛】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.17、1(满足条件的k值的范围是0<k≤4)【分析】反比例函数上一点向x、y轴分别作垂线,分别交于y轴和x轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点,∴当交于B点时,此时围成的矩形面积最大且为4,∴|k|最大为4,∵在第一象限,∴k为正数,即0<k≤4,∴k的取值可以为:1.故答案为:1(满足条件的k值的范围是0<k≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.18、:k<1.【详解】∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.三、解答题(共78分)19、见解析【分析】根据题意(将绕点逆时针旋转即可画出图形;【详解】解:如图所示,即为所求.【点睛】此题考查了旋转变换.注意抓住旋转中心与旋转方向是关键.20、(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.21、(1)如图,△A1B1C1为所作;见解析;点B1的坐标为(3,2);(2)如图,△A2B2C2为所作;见解析;点C2的坐标为(﹣2,﹣4);(3)如图,四边形AB2A2B为正方形.【分析】(1)利用网格特点和点平移的坐标规律写出、、的坐标,然后描点即可得到△;(2)利用网格特点和关于原点对称的点的坐标特征写出、、的坐标,然后描点即可得到△;(3)证明四条相等且对角线相等可判断四边形为正方形.【详解】解:(1)如图1,△为所作;点的坐标为;(2)如图1,△为所作;点的坐标为;(3)如图1,四边形为正方形,(理由:如图2,在四边形外侧构造如图所示直角三角形,由坐标网格的特点易证四个直角三角形全等,从而可得四边形四边都相等,四个角等于直角)【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)见解析;(2)10【分析】(1)令y=0得到关于x的二元一次方程,然后证明△=b2−4ac>0即可;(2)令y=0求出抛物线与x轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为=,且,所以.所以该函数的图像与x轴一定有两个交点.(2)将A(-1,0)代入函数关系式,得,,解得m=3,求得点B、C坐标分别为(4,0)、(0,-4).所以△ABC面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x轴的交点坐标是解答问题(2)的关键.23、(1)见解析;(2)1【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;
(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,,∴△BAP≌△CAQ(SAS);(2)∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===1.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确应用等边三角形的性质是解题关键.24、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南电子科技职业学院《现代日语语法》2023-2024学年第二学期期末试卷
- 西昌学院《甲骨文专题》2023-2024学年第二学期期末试卷
- 天津美术学院《母婴中医护理学》2023-2024学年第一学期期末试卷
- 河北化工医药职业技术学院《货币与金融统计学》2023-2024学年第一学期期末试卷
- 南阳师范学院《铸牢中华民族共同体意识》2023-2024学年第一学期期末试卷
- 天府新区航空旅游职业学院《数字调色与达芬奇操作基础》2023-2024学年第二学期期末试卷
- 合肥师范学院《环境学基础》2023-2024学年第二学期期末试卷
- 养殖场家禽合作合同书
- 委托代理记账服务合同
- 装修工程增减项补充合同协议书
- 2025年河南交通职业技术学院单招职业适应性测试题库及答案1套
- 严重过敏反应诊断和临床管理专家共识(2025年版)解读
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 2025-2030中国电子支付行业市场发展分析及发展前景与投资战略研究报告
- 2025年中国PCR扩增仪市场发展前景预测及投资战略咨询报告
- 数学全等三角形课件++2024-2025学年北师大版七年级数学下册
- LBT 235-2022绿色食品设施甜樱桃生产操作规程
- 英语-北京市朝阳区2025年高三年级第二学期质量检测一(朝阳一模)试题和答案
- 编织老师考试试题及答案
- 2025年03月重庆市涪陵区新妙镇选聘本土人才1人笔试历年参考题库考点剖析附解题思路及答案详解
- 河南省郑州市河南测绘职业学院2024年4月单招考试语文试卷
评论
0/150
提交评论