2022年河南省商丘市五校联考数学九年级第一学期期末综合测试模拟试题含解析_第1页
2022年河南省商丘市五校联考数学九年级第一学期期末综合测试模拟试题含解析_第2页
2022年河南省商丘市五校联考数学九年级第一学期期末综合测试模拟试题含解析_第3页
2022年河南省商丘市五校联考数学九年级第一学期期末综合测试模拟试题含解析_第4页
2022年河南省商丘市五校联考数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8) B.(﹣6,8) C.(﹣6,﹣8) D.(6,﹣8)2.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°3.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.4.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.45.下列是中心对称图形但不是轴对称图形的是()A. B. C. D.6.若关于x的一元二次方程有实数根,则k的取值范围是()A. B. C.且 D.且7.如图:已知,且,则()A.5 B.3 C.3.2 D.48.如图,点A(m,m+1)、B(m+3,m−1)是反比例函数与直线AB的交点,则直线AB的函数解析式为()A. B.C. D.9.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A. B. C. D.10.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°二、填空题(每小题3分,共24分)11.在△ABC中,∠B=45°,cosA=,则∠C的度数是_____.12.如图,已知一次函数y=kx-4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k=________.13.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________14.若二次函数的对称轴为直线,则关于的方程的解为______.15.某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.16.若、为关于x的方程(m≠0)的两个实数根,则的值为________.17.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.18.小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是____.

三、解答题(共66分)19.(10分)如图:在平面直角坐标系中,直线:与轴交于点,经过点的抛物线的对称轴是.(1)求抛物线的解析式.(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:.(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?若存在,请求出点的坐标,如果不存在,请说明理由.20.(6分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.21.(6分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色.(1)试用树形图或列表法中的一种列举出这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率.22.(8分)(1)如图1,在中,点在边上,且,,求的度数;(2)如图2,在菱形中,,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).23.(8分)如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.求抛物线的函数表达式:若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.25.(10分)小明本学期4次数学考试成绩如下表如示:成绩类别第一次月考第二次月考期中期末成绩分138142140138(1)小明4次考试成绩的中位数为__________分,众数为______________分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?26.(10分)在图1的6×6的网格中,已知格点△ABC(顶点A、B、C都在格各点上)(1)在图1中,画出与△ABC面积相等的格点△ABD(不与△ABC全等),画出一种即可;(2)在图2中,画出与△ABC相似的格点△A′B′C′(不与ABC全等),且两个三角形的对应边分别互相垂直,画出一种即可.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x=±6,y=±8,∵点P在第二象限,∴x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:

(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;

(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;

(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、D【解析】试题分析:∵OA=OC,∴∠A=∠ACO=30°,∵AB是⊙O的直径,∴∠BOC=2∠A=2×30°=60°.故选D.考点:圆周角定理.3、B【分析】把点(1,3)代入中即可求得k值.【详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.4、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.5、A【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、C【分析】一元二次方程有实数根,则根的判别式≥1,且k≠1,据此列不等式求解.【详解】根据题意,得:=1-16≥1且≠1,解得:且≠1.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意≠1.7、C【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵AD∥BE∥CF∴∵AB=4,BC=5,EF=4∴∴DE=3.2故选C【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.8、B【分析】根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出一次函数的解析式;【详解】由题意可知,m(m+1)=(m+1)(m-1)

解得m=1.

∴A(1,4),B(6,2);

设AB的解析式为∴解得∴AB的解析式为故选B.【点睛】此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.9、A【解析】由勾股定理,得AC=,由正切函数的定义,得tanA=,故选A.10、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题(每小题3分,共24分)11、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根据三角形的内角和定理可得∠C=75°.12、4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.13、1【分析】设出顶点式,根据,设出B(h+3,a),将B点坐标代入,即可求出a值,即可求出直线l与x轴之间的距离,进一步求出答案.【详解】由题意知函数的顶点纵坐标为-3,可设函数顶点式为,因为平行于轴的直线交此抛物线,两点,且,所以可设B(h+3,a).将B(h+3,a)代入,得所以点B到x轴的距离是6,即直线l与x轴的距离是6,又因为D到x轴的距离是3所以点到直线的距离:3+6=1故答案为1.【点睛】本题考查了顶点式的应用,能根据题意设出顶点式是解答此题的关键.14、,【分析】根据对称轴方程求得b,再代入解一元二次方程即可.【详解】解:∵二次函数y=x2+bx-5的对称轴为直线x=1,∴=1,即b=-2∴解得:,故答案为,.【点睛】本题主要考查的是抛物线与x轴的交点、一元二次方程等知识,根据抛物线的对称轴确定b的值是解答本题的关键.15、1.【解析】试题分析:根据题意首先得出抽取10个零件需要1天,进而得出答案.解:∵某车间生产的零件不合格的概率为,每天从他们生产的零件中任取10个做试验,∴抽取10个零件需要1天,则1天会查出1个次品.故答案为1.考点:概率的意义.16、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【详解】∵,,∴,故答案为:【点睛】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.17、1.【解析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.∵﹣1.5<0,∴函数有最大值.∴,即飞机着陆后滑行1米才能停止.18、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=.考点:概率.三、解答题(共66分)19、(1);(2)证明见解析;(3)存在,点的坐标为或.【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是,列出关于a、c的方程组求解即可;

(2)设P(3n,n),则PC=3n,PB=n,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;

(3)设,然后用含t的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含t的式子表示),最后,将点Q的坐标代入抛物线的解析式求得t的值即可.【详解】解:(1)当时,,解得,即,抛物线过点,对称轴是,得,解得,抛物线的解析式为;(2)∵平移直线经过原点,得到直线,∴直线的解析式为.∵点是直线上任意一点,∴,则,.又∵,∴.∵轴,轴∴∴∵,∴,∴.(3)设,点在点的左侧时,如图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.当点在点的右侧时,如下图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.综上所述,点的坐标为或.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含t的式子表示点Q的坐标是解题的关键.20、(1)见解析(2)公平,理由见解析【分析】(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.【详解】解:(1)根据题意列表得:(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.21、(1)详见解析;(2)【分析】(1)利用树状图列举出所有可能,注意是放回小球再摸一次;(2)列举出符合题意的各种情况的个数,再根据概率公式解答即可.【详解】(1)列树状图如下:故(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况(2)由树状图可知共有3×3=9种可能,“两次摸出球中至少有一个绿球”的有5种,所以概率是:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1);(2)详见解析.【分析】(1)设,利用等边对等角,可得,,根据三角形外角的性质可得,再根据等边对等角和三角形的内角和公式即可求出x,从而求出∠B.(2)根据等腰三角形的定义和判定定理画图即可.【详解】证明:(1)设∵∴又∵∴∴又∵∴又∵∴解出:∴(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【点睛】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是解决此题的关键.23、;;四边形可以为正方形,【分析】(1)由题意得出A,B坐标,并代入坐标利用待定系数法求出抛物线的函数表达式;(2)根据题意分别求出当过点时m的值以及当过点时m的值,并以此进行分析求得;(3)由题意设,代入解出n,并作,于,利用正方形性质以及全等三角形性质得出M为,将代入即可求得答案.【详解】解:将三点代入得解得;如图.关于对称的抛物线为当过点时有解得:当过点时有解得:;四边形可以为正方形由题意设,是抛物线第一象限上的点解得:(舍去)即如图作,于,于四边形为正方形易证为将代入得解得:(舍去)当时四边形为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论