




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.比较2,,的大小,正确的是()A. B.C. D.2.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠33.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm4.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是()A. B. C. D.5.下列各点中,位于第四象限的点是()A.(3,4) B.(3,4) C.(3,4) D.(3,4)6.在二次根式,,,中,最简二次根式有()A.1个 B.2个 C.3个 D.4个7.如图,直线y=kx(k为常数,k≠0)经过点A,若B是该直线上一点,则点B的坐标可能是()A.(-2,-1) B.(-4,-2) C.(-2,-4) D.(6,3)8.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架 B.三角形房架C.照相机的三脚架 D.放缩尺9.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.10.若、、为的三边长,且满足,则的值可以为()A.2 B.5 C.6 D.811.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)12.如图,和关于直线对称,下列结论中正确的有()①,②,③直线垂直平分,④直线和的交点不一定在直线上.A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.如图,在等腰三角形中,,为边上中点,多点作,交于,交于,若,,则的面积为______.14.关于的分式方程的解为负数,则的取值范围是_________.15.已知:如图,中,,外角,则____________________16.当,时,则的值是________________.17.若分式方程=无解,则增根是_________18.比较大小:________.(填“>”,“<”或“=”号)三、解答题(共78分)19.(8分)如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=40°,求∠DAE的度数;(2)若∠C>∠B,试说明∠DAE=(∠C-∠B);(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?20.(8分)在中,,,点是上的一点,连接,作交于点.(1)如图1,当时,求证:;(2)如图2,作于点,当时,求证:;(3)在(2)的条件下,若,求的值.21.(8分)如图,在中,,,且,求的度数.22.(10分)如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD,(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF,证明:CF=EB.24.(10分)如图直线对应的函数表达式为,直线与轴交于点.直线:与轴交于点,且经过点,直线,交于点.(1)求点,点的坐标;(2)求直线对应的函数表达式;(3)求的面积;(4)利用函数图象写出关于,的二元一次方程组的解.25.(12分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).若点M,N关于y轴对称,求(4a+b)2019的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,,,而49<64<125∴∴故选C.【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.2、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.3、C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.4、C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A是轴对称图形,∴A不符合题意,∵B是轴对称图形,∴B不符合题意,∵C不是轴对称图形,∴C符合题意,∵D是轴对称图形,∴D不符合题意,故选C.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.5、A【分析】根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.【详解】∵第四象限内点的横坐标大于0,纵坐标小于0,∴(3,4)位于第四象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.6、B【分析】根据最简二次根式的概念解答即可.【详解】∵,2,不能化简,不能化简.∴,是最简二次根式.故选B.【点睛】本题考查了最简二次根式的概念,解题的关键是正确理解最简二次根式的概念.7、C【分析】先根据点A的坐标求出k的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A的坐标为将代入直线得:,解得因此,直线的解析式为A、令,代入直线的解析式得,则点不符题意B、令,代入直线的解析式得,则点不符题意C、令,代入直线的解析式得,则点符合题意D、令,代入直线的解析式得,则点不符题意故选:C.【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.8、D【解析】试题分析:只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性.解:A,B,C都是利用了三角形稳定性,放缩尺,是利用了四边形不稳定性.故选D.考点:三角形的稳定性.9、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.10、B【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:由题意得,,,
解得:,,
∵4−2=2,4+2=6,
∴,
∴c的值可以为1.
故选:B.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.11、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.12、B【分析】根据轴对称的性质求解.【详解】解:①,正确;②,正确;③直线垂直平分,正确;④直线和的交点一定在直线上,故此说法错误正确的结论共3个,故选:B.【点睛】轴对称的性质:①成轴对称的两个图形是全等形;②对称轴是对应点连线的垂直平分线;③对应线段或者平行,或者重合,或者相交.如果相交,那么交点一定在对称轴上.二、填空题(每题4分,共24分)13、【分析】利用等腰直角三角形斜边中点D证明AD=BD,∠DBC=∠A=45,再利用证得∠ADE=∠BDF,由此证明△ADE≌△BDF,得到BC的长度,即可求出三角形的面积.【详解】∵,AB=BC,∴∠A=45,∵为边上中点,∴AD=CD=BD,∠DBC=∠A=45,∠ADB=90,∵,∴∠EDB+∠BDF=∠EDB+∠ADE=90,∴∠ADE=∠BDF,∴△ADE≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴的面积为=,故答案为:.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.14、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为:a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析15、65°70°【分析】利用外角性质求出∠C,再利用邻补角定义求出∠ABC.【详解】∵∠ABD=∠A+∠C,,,∴∠C=∠ABD-∠A=65°,∵∠ABC+∠ABD=180,∴∠ABC=180-∠ABD=70°故答案为:65°,70°.【点睛】此题考查外角性质,邻补角定义,会看图找到各角度的关系,由此计算得出所求的角度是解题的关键.16、1【分析】把,代入求值即可.【详解】当,时,===1.故答案是:1.【点睛】本题主要考查二次根式的值,掌握算术平方根的定义,是解题的关键.17、【分析】根据分式方程的解以及增根的定义进行求解即可.【详解】解:∵分式方程无解∴分式方程有增根∴∴增根是.故答案是:【点睛】本题考查了分式方程的解、增根定义,明确什么情况下分式方程无解以及什么是分式方程的增根是解题的关键.18、<【分析】根据5<9可得即,进而可得,两边同时除以2即可得到答案.【详解】解:∵5<9,∴,即,∴,∴,故答案为:<.【点睛】此题主要考查了二次根式的大小比较,根据5<9可得即,然后利用不等式的基本性质变形即可.三、解答题(共78分)19、(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.
(2)结合第(1)小题的计算过程进行证明即可.
(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD=20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B)-(90°-∠B-∠C)=∠C-∠B=(∠C-∠B);(3)(2)中的结论仍正确.
∵∠A′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°-∠B-∠C)=90°+∠B-∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+∠B-∠C)=(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.20、(1)见解析;(2)见解析;(3)1.【分析】(1)利用三角形外角的性质证得,从而证得,即可证明结论;(2)利用三角形外角的性质证得,继而求得,从而证得结论;(3)作出如图辅助线,利用证得,利用等腰三角形三线合一的性质求得,用面积法求得,从而证得结论.【详解】(1)∵,∴,∵,,,∴,∵,∴,∴,∵,∴;(2)∵,,∴,∵,,,∴,∵,∴,∵,∴,∵,∴,∵,,∴,∵,∴,∴,∵,∴;(3)过点作交延长线于点,过点作于点,过点作于点,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∵,,∴,∵,∴,∴【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、10【分析】设∠B=∠C=x,∠EDC=y,构建方程即可解决问题;【详解】设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180−2(x+y)=180−20−2x,∴2y=20,∴y=10,∴∠CDE=10.【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.22、(1)证明见解析;(2).【解析】(1)先根据等边三角形的性质可得,再根据角的和差、外角的性质可得,然后根据等腰三角形的判定定理即可得证;(2)先根据角的和差倍分求出的度数,从而可得是等腰直角三角形,再利用直角三角形的性质、等边三角形的性质求出的长,然后由线段的和差即可得.【详解】(1)是等边三角形是等腰三角形;(2)如图,过点D作于点F是等腰直角三角形故EB的长为.【点睛】本题考查了等边三角形的性质、等腰三角形的判定定理、直角三角形的性质等知识点,较难的是题(2),通过作辅助线,构造一个等腰直角三角形是解题关键.23、证明见解析【分析】根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB.【详解】解:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB,∴CF=EB.考点:1.全等三角形的判定与性质;2.角平分线的性质.24、(1)点D的坐标为(1,0),点C的坐标为(2,2);(2);(3)3;(4)【分析】(1)将y=0代入直线对应的函数表达式中即可求出点D的坐标,将点代入直线对应的函数表达式中即可求出点C的坐标;(2)根据图象可知点B的坐标,然后将点B和点C的坐标代入中,即可求出直线对应的函数表达式;(3)过点C作CE⊥x轴,先求出点A的坐标,然后根据三角形的面积公式求面积即可;(4)根据二元一次方程组的解和两个一次函数交点坐标关系即可得出结论.【详解】解:(1)将y=0代入中,解得x=1∴点D的坐标为(1,0)将点代入中,得解得:∴点C的坐标为(2,2);(2)由图象可知:点B的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公章合同范本模板
- ui设计兼职合同范本
- 上游电子销售合同范本
- 住宅抵押合同范本
- 借贷咨询合同范本
- 农村房车销售合同范本
- 农用器材采购合同范本
- 中美二十天然气合同范例
- 个人售卖二手车合同范本
- 出纳公司合同范本
- 重大事故隐患判定标准
- 新能源汽车驱动电机及控制系统检修课件 学习情境1:驱动电机的认知
- 2024年采购部年终总结
- 人教版(PEP)五年级英语下册第一单元测试卷-Unit 1 My day 含答案
- 打深水井施工方案
- 企业名称预先核准通知书
- 统筹管理方案
- 建筑工程安全文明施工标准化图集(附图丰富)
- Unit 1 Travel教案-2023-2024学年高一下学期 中职英语高教版(2023修订版)基础模块2
- DB3206T 1083-2024机关会议服务人员操作技术规范
- 习作《我的家人 》教案-2024-2025学年统编版语文四年级上册
评论
0/150
提交评论