第三章连接焊接课后习题参考答案_第1页
第三章连接焊接课后习题参考答案_第2页
第三章连接焊接课后习题参考答案_第3页
第三章连接焊接课后习题参考答案_第4页
第三章连接焊接课后习题参考答案_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

焊接连接参考答案一、概念题3.1从功能上分类,连接有哪几种基本类型?3.2焊缝有两种基本类型—对接坡口焊缝和贴角焊缝,二者在施工、受力、适用范围上各有哪些特点?3.3对接接头连接需使用对接焊缝,角接接头连接需采用角焊缝,这么说对吗?3.4hf和lw相同时,吊车梁上的焊缝采用正面角焊缝比采用侧面角焊缝承载力高?3.5为何对角焊缝焊脚尺寸有最大和最小取值的限制?对侧面角焊缝的长度有何要求?为什么?【答】(1)最小焊脚尺寸:角焊缝的焊脚尺寸不能过小,否则焊接时产生的热量较小,致使施焊时冷却速度过快,导致母材开裂。《规范》规定:hf≥1.5,式中:t2——较厚焊件厚度,单位为mm。计算时,焊脚尺寸取整数。自动焊熔深较大,所取最小焊脚尺寸可减小1mm;T形连接的单面角焊缝,应增加1mm;当焊件厚度小于或等于4mm时,则取与焊件厚度相同。(2)最大焊脚尺寸:为了避免焊缝区的主体金属“过热”,减小焊件的焊接残余应力和残余变形,角焊缝的焊脚尺寸应满足式中:t1——较薄焊件的厚度,单位为mm。(3)侧面角焊缝的最大计算长度侧面角焊缝在弹性阶段沿长度方向受力不均匀,两端大而中间小,可能首先在焊缝的两端破坏,故规定侧面角焊缝的计算长度lw≤60hf。若内力沿侧面角焊缝全长分布,例如焊接梁翼缘与腹板的连接焊缝,可不受上述限制。3.6简述焊接残余应力产生的实质,其最大分布特点是什么?3.7画出焊接H形截面和焊接箱形截面的焊接残余应力分布图。3.8贴角焊缝中,何为端焊缝?何为侧焊缝?二者破坏截面上的应力性质有何区别?3.9规范规定:侧焊缝的计算长度不得大于焊脚尺寸的某个倍数,原因何在?规范同时有焊缝最小尺寸的规定,原因何在?3.10规范禁止3条相互垂直的焊缝相交,为什么。3.11举3~5例说明焊接设计中减小应力集中的构造措施。3.12简述连接设计中等强度法和内力法的含义。3.13对接焊接时为什么采用引弧板?不用引弧板时如何考虑?在哪些情况下不需计算对接焊缝?3.14试判断下图所示牛腿对接焊缝的最危险点3.15焊缝质量检验是如何分级的?【答】《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。二、计算题2.1已知两块等厚不等宽的钢板用焊透的对接焊缝连接,焊接中采用引弧板。钢板材料为Q345钢。焊缝承受变化轴力作用(标准值),Nmax=+1600KN,Nmin=+240KN,试:分别按《桥规》和《钢规》对于对接焊缝进行强度验算。循环次数按2x106,焊缝等级为一级。【解】由于对接焊缝承受变化轴力作用,必须先确定其疲劳容许应力,然后进行强度验算。(一)按钢规验算(1)疲劳验算:该焊缝为2类,容许应力幅为:不满足疲劳强度要求。(2)静力强度验算焊缝强度满足要求(二)《桥规》(1)疲劳容许应力[σ0]。验算构件为焊接,疲劳应力为拉-拉构件应力循环特征系数ρ的计算:最大应力为拉应力,连接属5.2类,相应容许应力为II类,疲劳验算公式,,(此三项系数均为假定的一种情况,实际按规范表查)按桥规不满足疲劳强度要求。2.2验算如图所示三块钢板焊成的工字型截面梁的对接焊缝强度。尺寸如图,截面上作用的轴心拉力设计值N=250kN,弯矩设计值M=40kN.m,剪力设计值V=200kN,钢材为Q345,手工焊,焊条为E50型,施焊时采用引弧板,三级质量标准。(ftw=265N/mm2,fcw=310N/mm2,fvw=180N/mm2)【解】 2.3图中I32a牛腿用对接焊缝与柱连接。钢材为Q235,焊条用E43型,手工焊,用II级焊缝的检验质量标准。已知:I32a的截面面积A=67.05cm2;抵抗矩Wx=692.2cm2;腹板截面面积AW=25.4cm2。Ix:Sx=27.5,tw=9.5mm。试按照《钢规》和《桥规》(焊缝为一级)分别求F的最大值。【解】对接焊缝所承受的内力为:;钢规;对接焊缝A点处弯曲应力最大,由得,;F=694KN中和轴处剪应力最大,得F=461.8KN根据翼缘和腹板相交处折算应力应满足:得,SW’=得F=527KN按钢规F的最大值为461.8KN。【按照桥规做为选作题】桥规对接焊缝A点处弯曲应力最大,由得,;F=468KN中和轴处剪应力最大,得F=314KN根据翼缘和腹板相交处折算应力应满足:得,SW’=得F=352.8KN按桥规F的最大值为314KN。2.4已知500mm×12mm钢板,钢材:Q235,E43焊条,手工焊,未使用引弧板,焊缝质量为III级,钢板承受轴心拉力。设计:用双拼接板和围焊角焊缝的拼接,试求所需拼接板尺寸和焊脚尺寸。角焊缝强度设计值:=160Mpa。【解】1)设计拼接板拼接板宽为450mm;(连接的强度不小于被连接构件的强度)。按等强度设计原则,拼接板截面≥基材截面,取8mm。拼接板面积2×8×(500-2x25)=7200mm>12×500=6000mm2。焊脚尺寸对手工焊,焊脚mm,,取6mm。3)侧焊缝计算连接需要传递的内力=1800000N端焊缝可传递内力=2.44×0.7×6×450×160=738Kn侧焊缝需传递内力=512KN则:=512/(4×4.2×160)=190.5mm<60=360mm符合规范规定实际侧焊缝长度=195.5mm,取为200mm。2.5图(尺寸单位:mm)所示钢板牛腿用四条贴角焊缝连接在钢柱上(无引弧板)。钢材为Q235,焊条E43型。焊角尺寸hf=10mm,角焊缝强度设计值为试确定最大承载力P。【解】=4×0.7x10×200=5600mm2;=4×0.7x10×2002/6=186666.7mm3;;/5600=100/186666.7=/1866.7因160Mpa所以105×160/47.4=337.55kN2.6一雨棚拉杆受力如图所示,通过钢板和预埋件用角焊缝连接,需要进行角焊缝连接的验算,已知焊缝承受的静态斜向力为N=200kN(设计值),角度,角焊缝的焊脚尺寸hf=10mm,焊缝计算长度lw=300mm,钢材为Q235-B,手工焊,焊条为E43型。连接角焊缝是否满足设计要求?习题3.6图【解】内力分解2.7试设计双角钢与节点板的角焊缝连接。钢材为Q235-B,焊条为E43型,手工焊,作用着轴心力N=1000kN(设计值),分别采用三面围焊和两面侧焊进行设计。【解】角焊缝强度设计值。焊脚尺寸确定:最小:角钢肢尖处最大:角钢肢背处最大:角钢肢尖和肢背都取。⑴采用三面围焊正面角焊缝承担的力为:所以侧面角焊缝实际受力:所以所需侧焊缝的实际长度为:,取310mm,取120mm⑵采用两面侧焊角焊缝实际受力:所以所需侧焊缝的实际长度为:(同理:若取,则三面围焊时焊缝尺寸取肢背6-430,肢尖6-180;两面侧焊时焊缝尺寸取肢背6-510,肢尖6-260)2.8试设计如图所示牛腿与柱的连接角焊缝①②③,钢材为Q235-B,焊条为E43型,手工焊。【解】假定施焊时采用引弧板,则焊缝有效截面尺寸如图所示。⑴焊缝②③的设计焊脚尺寸确定:最小:最大:取。计算焊缝有效截面的形心位置:=143.7mm焊缝②③全部焊缝有效截面的惯性矩为:故焊缝②顶端由于M引起的最大正应力为焊缝③下端由于M引起的最大正应力和由于V引起的最大剪应力为牛腿翼缘与腹板交接处焊缝③有弯矩M引起的正应力和剪力V引起的剪应力的共同作用(假定剪力全部由腹板焊缝③承担并按近似计算):合力为⑵焊缝①的设计根据构造要求,取,则焊缝①为端焊缝,受轴心力N与弯矩M作用。焊缝①截面惯性矩为:焊缝端部受正应力最大:满足要求。2.9图所示牛腿,材料为Q235,焊条E43型,手工焊,三面围焊,焊脚尺寸,承受静力荷载。试验算焊缝强度【解】假定施焊时采用引弧板,则焊缝有效截面尺寸如图所示。计算焊缝有效截面的形心位置:焊缝有效截面的惯性矩:所以截面的极惯性矩:所以焊缝所受的扭矩为和剪力为扭矩T在截面上A点产生的应力为剪力V在截面上A点产生的应力为所以A点的合力应满足:即该连接所能承受的最大荷载为245.5kN。螺栓连接参考答案普通螺栓、摩擦性型高强度螺栓、承压型高强度螺栓受剪型连接的传力机理是什么?【答】普通螺栓受剪型连接依靠栓杆抗剪和孔壁承压传力;摩擦性型高强度螺栓受剪型连接依靠板件间的摩擦力传力;承压型高强度螺栓受剪型连接依靠栓杆抗剪和孔壁承压传力。普通螺栓群的单栓抗剪承载力设计值在什么条件下需要进行折减?为什么折减?怎样折减?(要求绘出接头构造及折减曲线)。【答】栓群在轴力作用下各个螺栓的内力沿栓群长度方向不均匀,两端大,中间小。螺栓承载力折减系数:普通螺栓群受偏心力作用时的受拉螺栓计算应怎样区分大、小偏心情况?【答】先假定转动中心位于螺栓群的形心,算出在轴力和弯矩作用下的低排和顶排螺栓的受力,如果,说明,所有螺栓受拉,属于小偏心情况;如果,说明下部螺栓受压,所以前面假定错误,属大偏心情况,按照构件的转动中心在低排螺栓连线重新计算。为什么要控制高强度螺栓的预拉力,其设计值是怎样确定的?【答】高强螺栓的应用,不论是受剪力连接、受拉力连接还是拉剪连接中,其受力性能主要是基于螺栓对板件产生的压力,即紧固的预拉力,即使是承压型的连接,也是部分利用这一性能,因此,控制预拉力是保证高强螺栓连接质量的一个关键性因素。高强螺栓预拉力设计值是这样确定的:基于钢材的屈服强度,考虑材料的不均匀性,为防止预拉力的松弛而需要的超张拉以及拧紧螺栓扭矩产生的剪力等因素进行综合确定,即:。螺栓群在扭矩作用下,在弹性受力阶段受力最大的螺栓其内力值是在什么假定条件下求得的?【答】螺栓群在扭矩作用下,其内力计算基于下列假定:⑴被连接板件为绝对刚性体;⑵螺栓是弹性体;⑶各螺栓绕螺栓群的形心旋转,使螺栓沿垂直于旋转半径r的方向受剪,各螺栓所受的剪力大小与r成正比。8.螺栓的性能等级是如何表示的?【答】螺栓的性能等级“m.n级”,小数点前的数字表示螺栓成品的抗拉强度不小于m×100N/mm2,小数点及小数点后的数字表示螺栓材料的屈强比—屈服点(高强螺栓取条件屈服点)与抗拉强度的比值。3-1.试设计图的粗制螺栓连接。(设计值),【解】:(1)螺栓计算:先布置好螺栓(如图所示),再进行验算。选用M20普通螺栓,一个抗剪螺栓的承载力设计值为:抗剪承载力设计值承压承载力设计值螺栓受力计算:螺栓受剪力V和扭矩T共同作用:最外螺栓受力最大,为故有:满足要求。(2)钢板净截面强度验算钢板截面1-1面积最小,而受力较大,应校核这一截面强度。其几何参数为:钢板截面最外边缘正应力钢板截面靠近形心处的剪应力3-2.试设计如图所示①角钢与连接板的螺栓连接,②竖向连接板与柱的翼缘板的螺栓连接,构件钢材为Q235-B,螺栓为粗制螺栓,并分别考虑支托是否受剪两种情况。【解】:①角钢与连接板的螺栓连接设计螺栓采用M22,一个抗剪螺栓的承载力设计值为:抗剪承载力设计值承压承载力设计值所以连接所需螺栓数为取4个,连接构造如图所示。②竖向连接板与柱的翼缘板的螺栓连接设计⑴假定剪力V由支托承受,螺栓只受轴力N作用螺栓采用M22,取,按如图所示布置,验算螺栓承载力。一个螺栓的受拉承载力为假定螺栓受力为小偏心,满足要求。⑵假定支托只在安装时起作用,则螺栓同时承受拉力和剪力作用一个螺栓的承载力设计值为螺栓布置同上,螺栓实际受力,所以有及满足要求。3-3.按摩擦型连接高强度螺栓设计题2中所要求的连接,并分别考虑①,②。【解】采用8.8级摩擦型高强度螺栓M20,连接处构件接触面用喷砂处理。所以有⑴角钢与连接板的螺栓连接设计一个摩擦型高强度螺栓抗剪承载力设计值所以连接所需螺栓数为取4个,连接构造如图所示。⑵竖向连接板与柱的翼缘板的螺栓连接设计①取,螺栓布置同3.7题,验算螺栓承载力。一个高强度螺栓的抗拉承载力为螺栓受剪力和轴心拉力作用:按新规范:连接满足设计要求。②螺栓布置同上。螺栓受剪力、轴心拉力和弯矩作用。按规范:,误差在5%以内,连接满足设计要求3-4.牛腿用2L100×20(由大角钢截得)及M22摩擦型连接高强度螺栓(10.9级)和柱相连,构件钢材Q235-B,接触面作喷砂处理,要求确定连接角钢两个肢上的螺栓数目;(摩擦型及)承压型设计两肢上的螺栓数目。习题3-4图【解】①用摩擦型高强度螺栓⑴抗剪螺栓设计:取,螺栓布置如图所示。一个摩擦型高强度螺栓抗剪承载力设计值螺栓受力:螺栓受剪力和扭矩共同作用:所以有满足要求⑵抗剪拉螺栓设计:螺栓受剪力和弯矩共同作用:取,螺栓布置如图所示。一个高强度螺栓的抗拉承载力为:一个高强度螺栓的抗剪承载力为:螺栓受力:按新规范:不满足,应重新布置设计。增加一排螺栓,②用承压型高强度螺栓⑴抗剪螺栓设计:布置同摩擦型高强螺栓。一个承压型高强度螺栓抗剪承载力设计值:所以有⑵抗剪拉螺栓设计:布置同摩擦型高强螺栓。一个承压型高强度螺栓承载力设计值:螺栓承受的剪力:所以有满足要求。3-5.两块截面为14mmx400的钢板,采用双拼接板进行拼接,拼接板厚8mm,钢材Q235B。作用在螺栓群形心处的轴心拉力设计值N=750kN,设计采用摩擦型高强螺栓,已知:高强度螺栓为8.8级,直径为M20,孔径22mm,接触面采用喷砂处理。设计该连接。【解】已知:高强度螺栓为8.8级,直径为M20,孔径22mm,接触面采用喷砂处理,抗滑移系数,,单栓抗剪承载力设计值:所需螺栓数按构造要求排列,并进行净截面验算净截面验算:3-6一雨棚拉杆受力如图所示,构件钢材Q235-B,采用两列摩擦型高强螺栓连接,已知拉杆承受的静态斜向力为N=250kN(设计值),角度如图所示,高强度螺栓为8.8级,直径为M20,孔径22mm,接触面采用喷砂处理,问:连接采用的高强螺栓群是否满足设计要求?【解】抗滑移系数,已知单个螺栓的抗剪承载力设计值为单个螺栓的抗拉承载力设计值为7.某多层框架结构中,图示为次梁与主梁的简支连接——用连接板与主梁加劲肋双面相连,连接板厚8mm。次梁H500×200×9×14支承在主梁H596×199×10×15的中心线上,梁端剪力设计值V=160KN,钢材为Q235,采用8.8级承压型高强度螺栓连接,螺栓M20,孔径d0=21.5mm。试验算此连接是否满足承载力要求。(注:应考虑由于连接偏心所产生的附加弯矩),已知,。【解】:(1)单螺栓抗剪承载力设计值(2)螺栓群受剪力V=100KN,偏心弯矩M=Ve=100×0.06=6KN·m一个螺栓受力为:则最外侧螺栓所受合力为:8.试验算图连接中,角焊缝强度和普通螺栓连接的强度。已知:(设计值)。两块钢板A为mm,中间连接板B为mm,两块A板用四条角焊缝与柱焊接,手工焊,焊条E43系列,B板与A板用8个直径d=20mm的普通螺栓连接。夹角=150,钢材Q235。=215N/mm2,焊脚尺寸,160N/mm2。普通螺栓孔径305N/mm2,130N/mm2。【解】:螺栓群受力:P=250KN单栓承载力:螺栓群验算:,二.焊缝验算V=214.5KN,N=64.7KNM=V·(120+60+70)-N·100=214.5×250-64.7×100=47155KN.mm第三章:合金结构焊接热影响区(HAZ)最高硬度

焊接热影响区(heataffectedzone,简称HAZ)最高硬度,是指焊接后焊接接头中的热影响区硬度的最高值。一般其硬度值采用维氏硬度来表示,例如HV10。是评价钢种焊接性的重要指标之一,比碳当量更为准确。采用焊接热影响区最高硬度作为一个因子来评价金属焊接性(包括冷裂纹敏感性),不仅反映钢钟化学成分的作用,还反映了焊接工艺参数影响下形成的不同组织形态的作用。因为硬度与强度有一定的头条,即强度高,对应的硬度也高。因此焊接热影响区最高硬度也反映了焊接热影响区的强度,而焊接热影响区的强度超高,会导致其塑性降低,从而易形成裂纹或裂纹易于扩展。另外,不同的组织形态的硬度值也不一样,在钢中,高碳马氏体(孪晶马氏体)的硬度值最高,且高碳马氏体的塑性、韧性最差,所以焊接热影响区最高硬度也可以间接反映接头的性能。焊接热影响区的最高硬度值的数值越高,其对就的强度就越高,韧性、塑性就越差。因些,重要结构中,对焊接热影响区最高硬度有一定的限制,并作为评价指标之一。

钢1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火3.Q345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。4.低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一“自回火”作用,以防止冷裂纹的产生;②要求在800~500℃之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术;典型的低碳调质钢在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。6.低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热影响区易产生大量M组织大致脆化。低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头。7.比较Q345、T-1钢、2.25Cr-Mo和30MnSiA的冷裂、热裂和消除应裂纹的倾向.答:1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。T-1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.25Cr-1Mo为珠光体耐热钢,其中Cr、Mo能显著提高淬硬性,控制Cr、Mo的含量能减缓冷裂倾向,2.25-1Mo冷裂倾向相对敏感。30CrMnSiA为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。2、热裂倾向Q345含碳相对低,而Mn含量高,钢的Wmn/Ws能达到要求,具有较好的抗热裂性能,热裂倾向较小。T-1钢含C低但含Mn较高且S、P的控制严格因此热裂倾小。30CrMnSiA含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。3、消除应力裂纹倾向:钢中Cr、Mo元素及含量对SR产生影响大,Q345钢中不含Cr、Mo,因此SR倾向小。T-1钢令Cr、Mo但含量都小于1%,对于SR有一定的敏感性;SR倾向峡谷年队较大,2.25Cr-Mo其中Cr、Mo含量相对都较高,SR倾向较大。8.同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别?为什么中碳调质钢一般不在退火的状态下进行焊接?答:在调质状态下焊接,若为消除热影响区的淬硬区的淬硬组织和防止延迟裂纹产生,必须适当采用预热,层间温度控制,中间热处理,并焊后及时进行回火处理,若为减少热影响的软化,应采用热量集中,能量密度越大的方法越有利,而且焊接热输入越小越好。在退火状态下焊接:常用焊接方法均可,选择材料时,焊缝金属的调质处理规范应与母材的一致,主要合金也要与母材一致,在焊后调质的情况下,可采用很高的预热温度和层间温度以保证调质前不出现裂纹。因为中碳调质钢淬透性、淬硬性大,在退火状态下焊接处理不当易产生延迟裂纹,一般要进行复杂的焊接工艺,采取预热、后热、回火及焊后热处理等辅助工艺才能保证接头使用性能。9珠光体耐热钢的焊接性特点与低碳调质钢有什么不同?珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同?why?答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹。珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求。10低温钢用于-40度和常温下使用时在焊接工艺和材料上选择是否有所差别?why?答:低温钢为了保证焊接接头的低温脆化及热裂纹产生要求材料含杂质元素少,选择合适的焊材控制焊缝成分和组织形成细小的针状铁素体和少量合金碳化物,可保证低温下有一定的AK要求。对其低温下的焊接工艺选择采用SMAW时用小的线能量焊接防止热影响区过热,产生WF和粗大M,采用快速多道焊减少焊道过热。采用SAW时,可用振动电弧焊法防止生成柱状晶。第四章不锈钢及耐热钢的焊接1.不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?答:焊缝中的含碳量易形成脆硬的淬火组织,降低焊缝的韧性,提高冷裂纹敏感性。碳容易和晶界附近的Cr结合形成Cr的碳化物Cr23C6,并在晶界析出,造成“贫Cr”现象,从而造成晶间腐蚀。选择含碳量低的焊条和母材,在焊条中加入Ti,Zr,Nb,V等强碳化物形成元素来降低和控制含氟中的含碳量。2.为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?答:焊缝中的δ相可打乱单一γ相柱状晶的方向性,不致形成连续,另外δ相富碳Cr,又良好的供Cr条件,可减少γ晶粒形成贫Cr层,故常希望焊缝中有4%~12%的δ相。通过控制铁素体化元素的含量,或控制Creq/Nieq的值,来控制焊缝中的铁素体含量。3.18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2}控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。4.简述奥氏体不锈钢产生热裂纹的原因?在母材和焊缝合金成分一定的条件下,焊接时应采取何种措施防止热裂纹?答:产生原因:{1}奥氏体钢的热导率小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中产生较大的拉应力;{2}奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹;{3}奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限{如Si、Nb},也易形成易溶共晶。防止方法:{1}严格控制有害杂质元素{S、P—可形成易溶液膜};{2}形成双向组织,以FA模式凝固,无热裂倾向;{3}适当调整合金成分:Ni<15%,适当提高铁素体化元素含量,使焊缝δ%提高,从而提高抗裂性;Ni>15%时,加入Mn、W、V、N和微量Zr、Ta、Re{<0.01%}达到细化焊缝、净化晶界作用,以提高抗裂性;{4}选择合适的焊接工艺。5.奥氏体钢焊接时为什么常用“超合金化”焊接材料?答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显著减少,更有利于提高耐点蚀性能。6.铁素体不锈钢焊接中容易出现什么问题?焊条电弧焊和气体保护焊时如何选择焊接材料?在焊接工艺上有什么特点?答:易出现问题:{1}焊接接头的晶间腐蚀;{2}焊接接头的脆化①高温脆性②σ相脆化③475℃脆化。SMAW要求耐蚀性:选用同质的铁素体焊条和焊丝;要求抗氧化和要求提高焊缝塑性:选用A焊条和焊丝。CO2气保焊选用专用焊丝H08Cr20Ni15VNAl。焊接工艺特点:{1}采用小的q/v,焊后快冷——控制晶粒长大;{2}采用预热措施,T℃<=300℃——接头保持一定ak;{3}焊后热处理,严格控制工艺——消除贫Cr区;{4}最大限度降低母材和焊缝杂质——防止475℃脆性产生;{5}根据使用性能要求不同,采用不同焊材和工艺方法。7.何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性和韧性差。现象:{1}高温脆性:在900~1000℃急冷至室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃,便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷变形有关。加入Mn使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出现475℃脆性适当降低含Cr量,有利于减轻脆化,若出现475℃脆化通过焊后热处理来消除。8.马氏体不锈钢焊接中容易出现什么问题,在焊接材料的选用和工艺上有什么特点?制定焊接工艺时应采取哪些措施?答:易出现冷裂纹、粗晶脆化。焊接材料的选用:{1}对简单的Cr13型,要保证性能,要求S、P、Si,C含量较低,使淬硬性下降,更要保证焊接接头的耐蚀性。{2}对Cr12为基加多元元素型,希望焊缝成分接近母材,形成均一的细小M组织。{3}对于超低C复相M钢,采用同质焊材,焊后经超微细复相化处理,可使焊缝的强韧化约等于母材水平。工艺特点:{1}预热温度高{局部或整体}T℃=150-260℃;{2}采用小的q/v:防止近缝区出现粗大α和κ析出;{3}选用低H焊条:焊缝成分与母材同质,高碳M可选用A焊条焊接.9.双相不锈钢的成分和性能特点,与一般A不锈钢相比双相不锈钢的焊接性有何不同?在焊接工艺上有什么特点?答:双相不锈钢是在固溶体中F和A相各占一半,一般较少相的含量至少也要达到30%的不锈钢。这类钢综合了A不锈钢和F不锈钢的优点,具有良好的韧性、强度及优良的耐氧化物应力腐蚀性能。与一般A不锈钢相比:{1}其凝固模式以F模式进行;{2}焊接接头具有优良的耐蚀性,耐氯化物SCC性能,耐晶间腐蚀性能,但抗H2S的SCC性能较差;{3}焊接接头的脆化是由于Cr的氮化物析出导致;{4}双相钢在一般情况下很少有冷裂纹,也不会产生热裂纹。焊接工艺特点:{1}焊接材料应根据“适用性原则”,不同类型的双相钢所用焊材不能任意互换,可采取“适量”超合金化焊接材料;{2}控制焊接工艺参数,避免产生过热现象,可适当缓冷,以获得理想的δ/γ相比例;{3}A不锈钢的焊接注意点同样适合双相钢的焊接。10.从双相不锈钢组织转变的角度出发,分析焊缝中Ni含量为什么比母材高及焊接热循环对焊接接头组织,性能有何影响?答:双相不锈钢的合金以F模式凝固,凝固结束为单相δ组织,随着温度的下降,开始发生δ→γ转变不完全,形成两相组织。显然,同样成分的焊缝和母材,焊缝中γ相要比母材少得多,导致焊后组织不均匀,韧性、塑性下降。提高焊缝中Ni含量,可保证焊缝中γ/δ的比例适当,从而保证良好的焊接性。在焊接加热过程,整个HAZ受到不同峰值温度的作用,最高接近钢的固相线,但只有在加热温度超过原固溶处理温度区间,才会发生明显的组织变化,一般情况下,峰值低于固溶处理的加热区,无显著组织变化,γ/δ值变化不大,超过固溶处理温度的高温区,会发生晶粒长大和γ相数量明显减少,紧邻溶合线的加热区,γ相全部溶于δ相中,成为粗大的等轴δ组织,冷却后转变为奥氏体相,无扎制方向而呈羽毛状,有时具有魏氏组织特征。第五章:有色金属1.为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散小气孔?而al-mg焊接时易出现焊接大气孔?答:1)氢是铝合金及铝焊接时产生气孔的主要原因。2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。3)氢在铝及其合金中的溶解度在凝点时可从0.69ml/100g突降至0.036mol/100g相差约20倍,这是促使焊缝产生气孔的重要原因之一。4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔防止措施:1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的性质原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水强的铝合金al-mg比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论