数列通项公式的求法最全_第1页
数列通项公式的求法最全_第2页
数列通项公式的求法最全_第3页
数列通项公式的求法最全_第4页
数列通项公式的求法最全_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于数列通项公式的求法最全第一页,共三十三页,2022年,8月28日类型一观察法:已知前几项,写通项公式一、普通数列:方法规律总结:1.正负号用(-1)n或(-1)n+1来调节。分式形式观察分母间关系和分子间关系的同时还要观察分子与分母间的关系,有时还要把约分后的分式还原后观察。2.如0.7,0.77,0.777…类的数列,要用“归九法”3.两个循环的数列是0,1,0,1…的变形。可以拆成一个常数列b,b,b,b…与

0,a-b,0,a-b..的和,分别写通项然后相加再化简。第二页,共三十三页,2022年,8月28日类型二、前n项和Sn法已知前n项和,求通项公式设﹛an﹜的前n项和为Sn,且满足Sn=n2+2n-1,求﹛an﹜的通项公式.例2:设数列﹛an﹜满足a1=1,an=-SnSn-1(n≥2,n∈N*)

求﹛an﹜的通项公式.例3:提示:把an代换成Sn-Sn-1等式两边再同÷(-SnSn-1)第三页,共三十三页,2022年,8月28日①②由②-①整理得第四页,共三十三页,2022年,8月28日例1:在﹛an﹜中,已知a1=1,an=an-1+n(n≥2),求通项an.练:二、递推数列:条件:f(1)+f(2)+…f(n-1)的和要可以求出才可用第五页,共三十三页,2022年,8月28日例2:练:条件:f(1)f(2)…f(n-1)的积要可以求出才可用第六页,共三十三页,2022年,8月28日则可考虑待定系数法设构造新的辅助数列

是首项为

公比为p的等比数列,求出

,再进一步求通项通用方法:待定系数法第七页,共三十三页,2022年,8月28日例3:分析:构造等比数列{an+x},若可以观察x值更好第八页,共三十三页,2022年,8月28日分析:构造等比数列{an+kn+b},第九页,共三十三页,2022年,8月28日分析:构造等比数列{an+xn2+yn+z},第十页,共三十三页,2022年,8月28日分析:构造等比数列{an+xqn+y},第十一页,共三十三页,2022年,8月28日例7:相除法两边同除以第十二页,共三十三页,2022年,8月28日相除法两边同除以或变式:第十三页,共三十三页,2022年,8月28日分析:第十四页,共三十三页,2022年,8月28日上面各式相加可得几个式子?其他解法探究:第十五页,共三十三页,2022年,8月28日例8:两边同除以an+1an相除法第十六页,共三十三页,2022年,8月28日例6:取倒法构造辅助数列1第十七页,共三十三页,2022年,8月28日类型六、(1)形如的递推式分析:取对数后构造等比数列第十八页,共三十三页,2022年,8月28日分析:先转化后取对数再构造等比数列第十九页,共三十三页,2022年,8月28日类型七、特征根法、不动点法(一)理论部分:第二十页,共三十三页,2022年,8月28日第二十一页,共三十三页,2022年,8月28日类型七、特征根法、不动点法(二)特征根法:第二十二页,共三十三页,2022年,8月28日第二十三页,共三十三页,2022年,8月28日类型七、特征根法、不动点法(一)理论部分:第二十四页,共三十三页,2022年,8月28日试求斐波那契数列(兔子数列):1,1,2,3,5,8,13,21,34,55,89……的通项公式第二十五页,共三十三页,2022年,8月28日类型七、特征根法、不动点法(三)不动点法:第二十六页,共三十三页,2022年,8月28日类型七、特征根法、不动点法(三)不动点法:第二十七页,共三十三页,2022年,8月28日不动点法理论纯字母推导比较难,看一个具体的例题,帮助理解第二十八页,共三十三页,2022年,8月28日特征根法对待定系数的妙用:第二十九页,共三十三页,2022年,8月28日类型八、其他方法(一)开方、平方法

求递推数列的通项的主要思路是通过转化,构造新的熟知数列,使问题化陌生为熟悉.我们要根据不同的递推关系式,采取不同的变形手段,从而达到转化的目的.

第三十页,共三十三页,2022年,8月28日类型八、其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论