版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知如图,为四边形内一点,若且,,则的度数是()A. B. C. D.2.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或43.如图所示,在折纸活动中,小明制作了一张纸片,点、分别是边、上,将沿着折叠压平,与重合,若,则().A.140 B.130 C.110 D.704.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-25.已知A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,m=(a﹣c)(b﹣d),则当m<0时,k的取值范围是()A.k<3 B.k>3 C.k<2 D.k>26.如图,三个边长均为4的正方形重叠在一起,,是其中两个正方形的对角线交点,则阴影部分面积是()A.2 B.4 C.6 D.87.在实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个8.下列命题是真命题的是()A.三角形的一个外角大于任何一个内角B.如果两个角相等,那么它们是内错角C.如果两个直角三角形的面积相等,那么它们的斜边相等D.直角三角形的两锐角互余9.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有()个.A.3个 B.4个 C.5个 D.6个10.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm二、填空题(每小题3分,共24分)11.如图,在中,有,.点为边的中点.则的取值范围是_______________.12.若,,则代数式的值为__________.13.分解因式:_____.14.·(-)的值为_______15.当____________时,解分式方程会出现增根.16.在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.17.若与是同类项,则的立方根是.18.若表示的整数部分,表示的小数部分,则的值为______.三、解答题(共66分)19.(10分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.20.(6分)如图,在中,与的角平分线交于点,.求的度数.21.(6分)如图,平面直角坐标系中,点A在第四象限,点B在x轴正半轴上,在△OAB中,∠OAB=90°,AB=AO=6,点P为线段OA上一动点(点P不与点A和点O重合),过点P作OA的垂线交x轴于点C,以点C为正方形的一个顶点作正方形CDEF,使得点D在线段CB上,点E在线段AB上.(1)①求直线AB的函数表达式.②直接写出直线AO的函数表达式;(2)连接PF,在Rt△CPF中,∠CFP=90°时,请直接写出点P的坐标为;(3)在(2)的前提下,直线DP交y轴于点H,交CF于点K,在直线OA上存在点Q.使得△OHQ的面积与△PKE的面积相等,请直接写出点Q的坐标.22.(8分)如图,三个顶点的坐标分别为,,.(1)画出关于轴对称的图形,并写出三个顶点的坐标;(2)在轴上作出一点,使的值最小,求出该最小值.(保留作图痕迹)23.(8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?24.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点.求证:△ACE≌△BCD.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AF;(2)过点E作EG∥DC,交AC于点G,试比较AF与GC的大小关系,并说明理由.26.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】连接BD,先根据三角形的内角和等于求出∠OBD+∠ODB,再根据三角形的内角和定理求解即可.【详解】解:如图,连接BD.∵在ABD中,,,∴∴在BOD中,故选:D.【点睛】本题考查的是三角形内角和定理,熟练掌握三角形的内角和定理,并能利用整体思想计算是解题关键.2、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【点睛】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.3、A【分析】利用∠1所在平角∠AEC上与∠2所在平角∠ADB上出发,利用两个平角的和减去多余的角,就能得到∠1+∠2的和,多余的角需要可以看作2∠AED+2∠ADE,因为∠A=70°所以∠AED+∠ADE=180°-70°=110°,所以∠1+∠2=360°-2(∠AED+∠ADE)=360°-220°=140°【详解】∠AED+∠ADE=180°-70°=110°,∠1+∠2=∠AEC+∠ADB-2∠AED-2∠ADE=360°-2(∠AED+∠ADE)=360°-220°=140°【点睛】本题主要考查角度之间的转化,将需要求的角与已知联系起来4、B【解析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.5、A【分析】将点A,点B坐标代入解析式可求k−1=,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣1x+2图象上的不同两个点,∴b=ka﹣1a+2,d=kc﹣1c+2,且a≠c,∴k﹣1=.∵m=(a﹣c)(b﹣d)<0,∴k<1.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−1=是关键,是一道基础题.6、D【分析】根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【详解】连接O1B,O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形,同理另外两个正方形阴影部分的面积也是S正方形,∴S阴影=S正方形=1.故选D.【点睛】本题主要考查了正方形的性质及全等三角形的证明,把阴影部分进行合理转移是解决本题的难点,难度适中.7、B【分析】根据无理数的概念逐一进行判定即可.【详解】都是有理数,是无理数所以无理数有2个故选:B.【点睛】本题主要考查无理数,能够区别有理数与无理数是解题的关键.8、D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B.如果两个角相等,那么它们不一定是内错角,故选项B错误;C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;D.直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.9、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可.【详解】解:作矩形的两条对称轴l1和l2,交于点P1,根据对称性可知此时P1满足题意;分别以A、B为圆心,以AB的长为半径作弧,交l1于点P2、P3;分别以A、D为圆心,以AD的长为半径作弧,交l2于点P4、P1.根据对称性质可得P1、P2、P3、P4、P1均符合题意这样的点P共有1个故选C.【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.10、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.二、填空题(每小题3分,共24分)11、【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.【详解】解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB=5,∵AC=7,∴5+7=12,7-5=2,∴2<AE<12,∴1<AD<1.故答案为:1<AD<1.【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.12、-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.13、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.14、-6xy【解析】试题分析:原式===-6xy.故答案为-6xy.15、1【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=1,故答案为1.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16、32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.17、2.【解析】试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.18、1【分析】先确定的取值范围,继而确定出x、y的值,然后再代入所求式子进行计算即可.【详解】∵5<<6,表示的整数部分,表示的小数部分,∴x=5,y=-5,∴==29-25=1,故答案为:1.【点睛】本题考查了无理数的估算,二次根式的混合运算,正确确定出x、y的值是解题的关键.三、解答题(共66分)19、见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.试题解析:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.20、【分析】根据角平分线的性质可知,与的角平分线交于点,则,,由三角形内角和,得,把,代入即可求出.【详解】与的角平分线交于点,,,三角形内角和等于,,故答案为:.【点睛】利用角平分线的性质可得,由三角形内角和,可得的两个底角的和为,再次利用三角形内角和可求出结果.21、(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)【分析】(1)①利用等腰直角三角形的性质可以得到点A和点B的坐标,从而根据待定系数法求得直线AB的函数表达式;②根据点A和点O的坐标可以求得直线AO的表达式;(2)根据题意画出图形,首先得出点P、F、E三点共线,然后根据正方形的性质得出PE是△OAB的中位线,即点P为OA的中点,则点P的坐标可求;(3)根据题意画出图形,然后求出直线PD的解析式,得到点H的坐标,根据(2)中的条件和题意,可以求得△PKE的面积,再根据△OHQ的面积与△PKE的面积相等,可以得到点Q横坐标的绝对值,由点Q在直线AO上即可求得点Q的坐标.【详解】解:(1)①∵在△OAB中,∠OAB=90°,AB=AO=,∴△AOB是等腰直角三角形,OB=,∴∠AOB=∠ABO=45°,∴点A的坐标为(6,﹣6),点B的坐标为(12,0),设直线AB的函数表达式为y=kx+b,,得,即直线AB的函数表达式是y=x﹣12;②设直线AO的函数表达式为y=ax,6a=﹣6,得a=﹣1,即直线AO的函数表达式为y=﹣x,(2)点P的坐标为(3,﹣3),理由:如图:∵在Rt△CPF中,∠CFP=90°,∠CFE=90°,∴点P、F、E三点共线,∴PE∥OB,∵四边形CDEF是正方形,∠OPC=90°,∠COA=45°,∴CF=PF=AF=EF,∴PE是△OAB的中位线,∴点P为OA的中点,∴点P的坐标为(3,﹣3),故答案为:(3,﹣3);(3)如图,在△PFK和△DCK中,∴△PFK≌△DCK(AAS),∴CK=FK,则由(2)可知,PE=6,FK=1.5,BD=3∴点D(9,0)∴△PKE的面积是=4.5,∵△OHQ的面积与△PKE的面积相等,∴△OHQ的面积是4.5,设直线PD的函数解析式为y=mx+n∵点P(3,﹣3),点D(9,0)在直线PD上,∴,得,∴直线PD的函数解析式为y=,当x=0时,y=-,即点H的坐标为,∴OH=设点Q的横坐标为q,则,解得,q=±2,∵点Q在直线OA上,直线OA的表达式为y=﹣x,∴当x=2时,y=﹣2,当x=﹣2时,x=2,即点Q的坐标为(2,﹣2)或(﹣2,2),【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,待定系数法,勾股定理,掌握等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,待定系数法,勾股定理是解题的关键,第(2)(3)问的难点在于需要先根据题意画出相应的图形.22、(1)见解析,;(2)见解析,.【分析】(1)先根据轴对称的定义画出点,再顺次连接即可得,根据点坐标关于x轴对称的变化规律即可得点的坐标;(2)根据轴对称的性质、两点之间线段最短可得连接与x轴的交点P即为所求,最小值即为的长,由两点之间的距离公式即可得.【详解】(1)先根据轴对称的定义画出点,再顺次连接即可得,如图所示:点坐标关于x轴对称的变化规律:横坐标不变、纵坐标变为相反数则;(2)由轴对称的性质得:则由两点之间线段最短得:连接与x轴的交点P即为所求,最小值即为的长由两点之间的距离公式得:.【点睛】本题考查了画轴对称图形与轴对称的性质、两点之间线段最短等知识点,熟记轴对称图形与性质是解题关键.23、(1)每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.构建方程组即可解决问题;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,求出整数解即可;【详解】(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,解得a≤1,∴2≤a≤1.a是正整数,∴a=2或a=1.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车;【点睛】本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、详见解析.【分析】首先根据△ABC和△ECD都是等腰直角三角形,可知EC=DC,AC=CB,再根据同角的余角相等可证出∠1=∠1,再根据全等三角形的判定方法SAS即可证出△ACE≌△BCD.【详解】解:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB.∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠1.在△ACE和△BCD中,∵,∴△ACE≌△BCD(SAS).【点睛】本题考查了全等三角形的判定方法,关键是熟练掌握全等三角形的5种判定方法:SSS、SAS、AAS、ASA、HL,选用哪一种方法,取决于题目中的已知条件.25、(1)见解析;(2)AF=GC,理由见解析.【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大数据服务合同违约金问题及处理办法
- 2024版合法借款合同模板
- 2024年店铺经营权代理协议
- 2024年度电机维修配件销售与代理合同
- 2024年度安全环保施工与社区关系和谐协议
- 2024年保险合同(财产)
- 2024年度智能物流系统研发与实施合同
- 2024年度租赁合同标的及服务内容详细描述
- 对联课件名称教学课件
- 2024年卫星发射服务提供商与客户的发射合同
- 《我的家乡南京》课件
- 《离心技术》课件
- 政府消防专职队合同范本
- 土木工程大学生未来职业规划课件
- 监狱安全生产研究论文
- 《湖南省医疗保险“双通道”管理药品使用申请表》
- 建筑抗震设计标准 DG-TJ08-9-2023
- 少年宫物业管理整体服务设想和总体目标设定
- MOOC 宪法学-西南政法大学 中国大学慕课答案
- 学生的权利与义务-学生的法律地位及权利保护
- 【教案】心灵的幻象+教学设计-高一美术湘美版(2019)美术鉴赏
评论
0/150
提交评论