版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()A.kg B.kg C.kg D.kg2.二次三项式(是整数),在整数范围内可分为两个一次因式的积,则的所有可能值有()个A.4 B.5 C.6 D.83.如果解关于x的分式方程=5时出现了增根,那么a的值是()A.﹣6 B.﹣3 C.6 D.34.如图,在等边三角形中,、分别为、上的点,且,、相交于点,,垂足为.则的值是().A.2 B. C. D.5.如图,在中,已知点D,E,F分别为BC,AD,CE的中点,且,则的面积是()A.3 B.4 C.5 D.66.下列分式中和分式的值相等的是()A. B.C. D.7.实数a,b在数轴上的对应点如图所示,则|a﹣b|﹣的结果为()A.b B.2a﹣b C.﹣b D.b﹣2a8.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等.A.1个 B.2个 C.3个 D.4个9.如图,直线,被直线所截,下列条件一定能判定直线的是()A. B. C. D.10.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD二、填空题(每小题3分,共24分)11.中,,,,将它的一个锐角翻折,使该锐角顶点落在其对边的中点处,折痕交另一直角边于点,交斜边于点,则的周长为__________.12.关于x的方程有两个不相等的实数根,则m的取值范围是__________.13.计算:________.14.分式有意义时,x的取值范围是_____.15.分解因式:x3y﹣4xy=_____.16.已知方程2x2n﹣1﹣3y3m﹣n+1=0是二元一次方程,则m=_____,n=_____.17.如图,中,,若沿图中虚线截去,则______.18.画出一个正五边形的所有对角线,共有_____条.三、解答题(共66分)19.(10分)如图,已知,是,的平分线,,求证:.20.(6分)如图,点在线段上,,,.平分.求证:(1);(2).21.(6分)某广告公司为了招聘一名创意策划,准备从专业技能和创新能力两方面进行考核,成绩高者录取.甲、乙、丙三名应聘者的考核成绩以百分制统计如下:(1)如果公司认为专业技能和创新能力同等重要,则应聘人将被录取.(2)如果公司认为职员的创新能力比专业技能重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.22.(8分)计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+323.(8分)如图,在中,,,,为边上的两个点,且,.(1)若,求的度数;(2)的度数会随着度数的变化而变化吗?请说明理由.24.(8分)我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况下,可通过证明等底等高来说明它们的面积相等,已知与是等腰直角三角形,,连接、.(1)如图1,当时,求证(2)如图2,当时,上述结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,如果点为的中点,连接,延长交于,试猜想与的位置关系,并证明你的结论.25.(10分)某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若每月用水量超过10吨,则超过部分每吨按市场价元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.(1)求每吨水的优惠价和市场价分别是多少?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式.26.(10分)如图,在矩形中,,垂足分别为,连接.求证:四边形是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、A【分析】科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数。本题小数点往右移动到2的后面,所以【详解】解:0.00021故选A.【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.2、C【分析】根据十字相乘法的分解方法和特点可知:的值应该是的两个因数的和,即即得m的所有可能值的个数.【详解】,的可能值为:故m的可能值为:共6个,故选:C.【点睛】考查了十字相乘法分解因式,对常数项的不同分解是解本题的关键,注意所求结果是值的个数.3、A【解析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:去分母得:2x+a=5x﹣15,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:6+a=0,解得:a=﹣6,故选A.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.4、A【分析】因为AG⊥CD,△AGF为直角三角形,根据三角函数证明∠GAF=30°或∠AFD=60°即可,需要证明△ADF∽△ABE,通过证明△ABE≌△CAD可以得出.【详解】∵三角形ABC是等边三角形,∴AB=CA,∠ABE=∠CAD=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS).∴∠AEB=∠CDA,又∠EAD为公共角,∴△ADF∽△ABE.∴∠AFD=∠B=60°.∵AG垂直CD,即∠AGF=90°,∴∠GAF=30°,∴AF=2FG,即.故选:A.【点睛】此题主要考查等边三角形的性质、三角形全等的判定与性质及有30°角的直角三角形的性质等知识;难度较大,有利于培养同学们钻研和探索问题的精神,证明线段是2倍关系的问题往往要用到有30°角的直角三角形的性质求解,要熟练掌握.5、B【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】点F是CE的中点,△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,E是AD的中点,,E是AD的中点,,,且=16=4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出.6、C【分析】根据分式的基本性质进行判断.【详解】解:A、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;B、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;C、分式的分子、分母同时乘以不为零的因式(x-3),分式的值不变,所以该分式与分式的值相等.故本选项正确;D、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;故选:C.【点睛】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7、A【分析】由数轴可知a<0<b,根据绝对值的性质和二次根式的性质化简即可.【详解】解:由数轴可知,a<0<b,则a﹣b<0,则|a﹣b|﹣=-(a-b)-(-a)=﹣a+b+a=b.故选A.【点睛】本题考查的是绝对值和二次根式,熟练掌握绝对值的性质和二次根式的性质是解题的关键.8、A【分析】根据命题的真假性进行判断即可得解.【详解】①数轴上的点和实数是一一对应的,故原命题错误,是假命题;②中,已知两边长分别是3和4,则第三条边长为5或,故原命题错误,是假命题;③在平面直角坐标系中点关于y轴对称的点的坐标是,故原命题正确,是真命题;④两条平行直线被第三条直线所截,内错角相等,故原命题题错误,是假命题.所以真命题只有1个,故选:A.【点睛】本题主要考查了相关命题真假性的判断,熟练掌握相关命题涉及的知识点是解决本题的关键.9、C【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【详解】由∠1=∠3,不能判定直线a与b平行,故A不合题意;由∠3=∠4,不能判定直线a与b平行,故B不合题意;由∠3=∠2,得∠4=∠2,能判定直线a与b平行,故C符合题意;由,不能判定直线a与b平行,故D不合题意;故选:C.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.10、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题3分,共24分)11、20cm或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可.【详解】当∠B翻折时,B点与D点重合,DE与EC的和就是BC的长,即DE+EC=16cm,CD=AC=6cm,故△CDE的周长为16+6=22cm;当∠A翻折时,A点与D点重合.同理可得DE+EC=AC=12cm,CD=BC=8cm,故△CDE的周长为12+8=20cm.故答案为20cm或22cm.【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.12、【分析】有两个不相等实数根得到判别式大于0,解不等式即可求解.【详解】解:由题意可知,方程有两个不相等的实数根,解得:,故答案为:.【点睛】本题考查一元二次方程判别式的应用,当△>0时,方程有两个不相等的实根,当△=0时,方程有两个相等实根,当△<0时,方程没有实数根.13、-2【分析】按照二次根式运算法则进行计算即可.【详解】故答案为:-2.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.14、x>1.【解析】试题解析:根据题意得:解得:故答案为点睛:二次根式有意义的条件:被开方数大于等于零.分式有意义的条件:分母不为零.15、xy(x+2)(x-2)【解析】原式=.故答案为.16、1【分析】含有两个未知数,并且所含未知数的项的次数是都是1的方程是二元一次方程,根据定义解答即可.【详解】由题意得:2n-1=1,3m-n+1=1,解得n=1,,故答案为:,1.【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.17、255°【分析】先根据三角形内角和求出的度数,再利用四边形的内角和求出的度数即可.【详解】∵故答案为:.【点睛】本题主要考查三角形内角和定理和四边形内角和,掌握三角形内角和定理和四边形内角和是解题的关键.18、1【分析】画出图形即可求解.【详解】解:如图所示:五边形的对角线共有=1(条).故答案为:1.【点睛】本题考查多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.三、解答题(共66分)19、见解析【分析】先证明,进而可证,然后根据内错角相等,两直线平行即可证明结论成立.【详解】证明:∵是的平分线(已知),∴(角平分线的定义).∵是的平分线(已知),∴(角平分线的定义).又∵(已知),∴(等式的性质).∵(已知),∴(等量代换).∴(内错角相等,两直线平行).【点睛】本题考查了行线的判定方法,熟练掌握平行线的行线的判定方法是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行;
②内错角相等,两直线平行;③同旁内角互补,两直线平行.也考查了角平行线的定义.20、(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.
(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.试题解析:∵,∴,在和中∴,∵,∴,又∵平分,∴.21、(1)甲(2)乙将被录取【分析】(1)根据题意分别求出甲、乙、丙三名应聘者的平均成绩进行比较即可;(2)由题意利用加权平均数计算他们赋权后各自的平均成绩,从而进行说明.【详解】解:(1)根据公司认为专业技能和创新能力同等重要,即是求甲、乙、丙三名应聘者的平均成绩:甲:;乙:;丙:;所以应聘人甲将被录取.(2)甲:;乙:;丙:;所以乙将被录取.【点睛】本题主要考查平均数相关计算,解题的关键是掌握算术平均数和加权平均数的定义.22、(1)3;(2)6-.【分析】(1)先去绝对值,再开方和乘方,最后算加减法即可.(2)先去括号,再算乘法,最后算加减法即可.【详解】(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+3=6﹣2+=6﹣【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.23、(1)35°;(2)的度数不会随着度数的变化而变化,是35°.【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC,∠BCD=∠BDC,得∠BCE=∠ACB-∠ACE=110°-75°=35°;再根据∠DCE=∠BCD-∠BCE可得;(2)解题方法如(1),求∠ACE=∠AEC=;∠BCD=∠BDC=,∠BCE=∠ACB-∠ACE,所以∠DCE=∠BCD-∠BCE=-(110°-).【详解】因为,所以∠ACE=∠AEC=;∠BCD=∠BDC=所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)的度数不会随着度数的变化而变化,理由:因为在中,,所以因为,所以∠ACE=∠AEC=;∠BCD=∠BDC=所以∠BCE=∠ACB-∠ACE=110°-所以∠DCE=∠BCD-∠BCE=-(110°-)=35°故的度数不会随着度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.24、(1)证明见解析;(2)成立,理由见解析;(3)GF⊥BE,证明见解析【分析】(1)由△ABC和△DEC是等腰直角三角形,即可得出相应的线段相等,从而可以证明出;(2)作AG垂直于DC的延长线于G,作BH垂直于CE,垂足为H,利用题目已知条件可证的△ACG≌△BCH,从而知道AG=BH,即可得出;(3)延长CG到点H,连接AH,根据题目已知可证的△AGH≌△DGC,得到CD=AH,∠AHG=∠HCD,进一步证的△AHC≌△ECB,得到∠CEB=∠AHC=∠HCD,最后利用互余即可证得GF⊥BE.【详解】证明:(1)∵△ABC和△DEC是等腰直角三角形∴AC=CB,DC=CE,∠ACB=∠DCE=90°∵∠BCE=90°∴∠ACD=90°∵,∴(2)成立如图所示,作AG垂直于DC的延长线于G,作BH垂直于CE,垂足为H∵∠DCE=90°∴∠GCE=90°∵BH⊥CE∴∠BHC=90°∴GD∥BH∴∠GCB=∠CBH∵∠GCB+∠ACG=90°,∠BCH+∠CBH=90°∴∠BCH=∠ACG在△ACG和△BCH中∴△ACG≌△BCH∴AG=BH∵,,CE=CD∴(3)GF⊥BE如图所示,延长CG到点H,使得HG=GC,连接AH∵点G为AD的中点∴AG=G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大数据服务合同违约金问题及处理办法
- 2024版合法借款合同模板
- 2024年店铺经营权代理协议
- 2024年度电机维修配件销售与代理合同
- 2024年度安全环保施工与社区关系和谐协议
- 2024年保险合同(财产)
- 2024年度智能物流系统研发与实施合同
- 2024年度租赁合同标的及服务内容详细描述
- 对联课件名称教学课件
- 2024年卫星发射服务提供商与客户的发射合同
- 消防安全培训内容
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 变电站绿化维护施工方案
- 校园展美 课件 2024-2025学年人美版(2024)初中美术七年级上册
- 2024版《糖尿病健康宣教》课件
- ktv保安管理制度及岗位职责(共5篇)
- 脑出血试题完整版本
- 义务教育信息科技课程标准(2022年版)考试题库及答案
- (正式版)QBT 2174-2024 不锈钢厨具
- 监控维修施工方案
- 混凝土早强剂检验报告(出厂)
评论
0/150
提交评论