2022-2023学年江苏省无锡外国语学校数学九年级第一学期期末监测试题含解析_第1页
2022-2023学年江苏省无锡外国语学校数学九年级第一学期期末监测试题含解析_第2页
2022-2023学年江苏省无锡外国语学校数学九年级第一学期期末监测试题含解析_第3页
2022-2023学年江苏省无锡外国语学校数学九年级第一学期期末监测试题含解析_第4页
2022-2023学年江苏省无锡外国语学校数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.52.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±13.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣34.已知两个相似三角形的面积比为4:9,则周长的比为()A.2:3 B.4:9C.3:2 D.5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.16.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、27.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.8.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=339.若反比例函数的图象在每一条曲线上都随的增大而减小,则的取值范围是()A. B. C. D.10.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.11.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B. C. D.12.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为()A.1 B.15 C.20 D.25二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点A是函数图象上的点,AB⊥x轴,垂足为B,若△ABO的面积为3,则的值为__.14.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.16.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.17.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为_____.18.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.三、解答题(共78分)19.(8分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.20.(8分)如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.(1)求证:是的切线;(2)求证:是等腰三角形;(3)若,,求的值及的长.21.(8分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.22.(10分)如图,矩形中,,以为直径作.(1)证明:是的切线;(2)若,连接,求阴影部分的面积.(结果保留)23.(10分)已知一元二次方程x2﹣3x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.24.(10分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.25.(12分)如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.26.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.2、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.3、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、A【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,

∴两个相似三角形的相似比为2:1,

∴这两个相似三角形的周长之比为2:1.故选A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.5、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.6、A【分析】直接利用一元二次方程中各部分的名称分析得出答案.【详解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣1.故选:A.【点睛】此题主要考查了一元二次方程的一般形式,正确认识各部分是解题关键.7、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.8、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.9、A【分析】根据反比例函数的图象和性质,当反比例函数y的图象的每一条曲线上,y都随x的增大而减小,可知,k﹣1>0,进而求出k>1.【详解】∵反比例函数y的图象的每一条曲线上,y都随x的增大而减小,∴k﹣1>0,∴k>1.故选:A.【点睛】本题考查了反比例函数的图象和性质,对于反比例函数y,当k>0时,在每个象限内,y随x的增大而减小;当k<0时,在每个象限内,y随x的增大而增大.10、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.11、A【解析】根据黄金比的定义得:,得.故选A.12、C【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=1,然后根据△PEF的周长公式即可求出其结果.【详解】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=4,∴△PEF的周长=PE+EF+PF=PA+PB=2.故选:C.【点睛】本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.二、填空题(每题4分,共24分)13、-6【解析】根据反比例函数k的几何性质,矩形的性质即可解题.【详解】解:由反比例函数k的几何性质可知,k表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【点睛】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.14、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.15、【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解.【详解】设AB所在直线的解析式为:y=kx+b,把(1.5,70)与(2,0)代入得:,解得:,∴AB所在直线的解析式为:y=-140x+280,令x=0,得到y=280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+60)千米,根据题意得:x+x+60=280,解得:x=110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,∴甲车的速度为85千米/时,乙车速度为55千米/时,根据题意得:280﹣55×(280÷85)=(千米).则快车到达乙地时,慢车与甲地相距千米.故答案为:【点睛】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB所在直线的解析式是解题的关键.16、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.17、4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C==8(cm);综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.18、1;【解析】根据必然事件的定义可知三名男生都必须被选中,可得答案.【详解】解:∵男生小强参加是必然事件,∴三名男生都必须被选中,∴只选1名女生,故答案为1.【点睛】本题考查的是事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.三、解答题(共78分)19、(1)四边形;(2)详见解析;(3)【分析】(1)根据三角形相似的判定定理,得∆ABC~∆EAC,进而即可得到答案;(2)由旋转的性质得,,,结合,得,进而即可得到结论;(3)过点作于,得,根据三角形的面积得,结合∽,即可得到答案.【详解】(1)由题意得:,∴,∴∆ABC~∆EAC,∴被分割成的“友好四边形”的是:四边形,故答案是:四边形;(2)根据旋转的性质得,,,∵,∴,∴,∴∽,∴四边形是“友好四边形”;(3)过点作于,∴在中,,∵的面积为,∴,∴,∵四边形是被分割成的“友好四边形”,且,∴∽,∴,∴,∴.【点睛】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,掌握三角形相似的判定和性质,是解题的关键.20、(1)见解析;(2)见解析;(3),【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB∽△ADC,由相似三角形的对应边成比例,求CB的值,然后求求的值;连结BE,在Rt△FEB和Rt△AEB中,利用勾股定理来求EF即可.【详解】解:(1)如图1,连结,是的直径,,又点是的中点,.,又是的切线图1(2)四边形内接于,.,即是等腰三角形(3)如图2,连结,设,,在中,,由(1)可知,又,在中,,,是的直径,,即解得图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.21、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键.22、(1)见解析;(2)【分析】(1)过O点作OE⊥CD于E点,证四边形OEBC为正方形,可得OE为半径,问题即可得证.(2)连接BE,S阴影=S△BED+(S扇形OBE-S△BOE),代入数值求解即可.【详解】(1)过O点作OE⊥CD于E点,则∠OEC=90°∵四边形ABCD为矩形∴∠ABC=∠BCE=90°∴四边形OECB为矩形又AB=2BC,AB=2OB∴OB=BC∴四边形OBCE为正方形∴OE=OB又OE⊥CD故CD为O的切线.(2)连接BE,由(1)可得:四边形OBCE为正方形∴OB=OE=EC=OB=3,DC=AB=6,DE=3∴S阴影=S△BED+(S扇形OBE-S△BOE)=【点睛】本题考查的是圆的切线及扇形的面积计算,掌握圆的切线的证明方法及扇形的面积计算公式是关键.23、(1);(2)x1=x2=【分析】(1)根据一元二次方程根的判别式大于零,列出不等式,即可求解;(2)根据一元二次方程根的判别式等于零,列出方程,求出m的值,进而即可求解.【详解】(1)∵一元二次方程x2﹣3x+m=1有两个不相等的实数根,∴∆=b2﹣4ac=9﹣4m>1,∴m<;(2)∵一元二次方程x2﹣3x+m=1有两个相等的实数根,∴∆=b2﹣4ac=9﹣4m=1,∴m=,∴x2﹣3x+=1,∴x1=x2=.【点睛】本题主要考查一元二次方程根的判别式,掌握根的判别式与一元二次方程根的情况关系是解题的关键.24、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解.【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.25、(1)见解析;(2)见解析【分析】(1)根据平行线的性质得∠B=∠C,然后由两个角对应相等,即可证明两个三角形相似;(2)由(1)△AFE∽△BFA,得到,即可得到结论成立.【详解】解:证明:(1)∵AB∥CD(已知),∴∠B=∠C(两直线平行内错角相等),又∠EAF=∠C(已知),∴∠B=∠EAF(等量代换),又∠AFE=∠BFA(公共角),∴△AFE∽△BFA(两对对应角相等的两三角形相似)(2)由(1)得到△AFE∽△BFA,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论