版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm2.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大3.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个 B.2个 C.3个 D.4个4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.55.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40° B.50° C.80° D.100°6.如图,在平面直角坐标系中,已知点的坐标是,点是曲线上的一个动点,作轴于点,当点的橫坐标逐渐减小时,四边形的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先减小后增大7.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限8.已知二次函数和一次函数的图象如图所示,下面四个推断:①二次函数有最大值②二次函数的图象关于直线对称③当时,二次函数的值大于0④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有()A.1个 B.2个 C.3个 D.4个9.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且11.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.12.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570二、填空题(每题4分,共24分)13.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.14.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.15.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.16.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.17.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.18.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.三、解答题(共78分)19.(8分)某市有A、B、C三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A公园游玩的概率是;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)20.(8分)在Rt△ABC中,∠C=90°,AC=,BC=.解这个直角三角形.21.(8分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=322.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.23.(10分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)24.(10分)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=1.求证:无论a取何值,原方程总有两个不相等的实数根:(2)已知:二次函数y=ax2+bx+c(a≠1)中的x和y满足下表:x…﹣11123…y…31﹣11m…①观察上表可求得m的值为;②试求出这个二次函数的解析式.25.(12分)例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.1,x2≈2.1.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.根据你对上面教材内容的阅读与理解,解决下列问题:(1)利用函数图象确定不等式x2﹣4x+3<0的解集是;利用函数图象确定方程x2﹣4x+3=的解是.(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.①请在网格内画出函数y=|x2﹣4x+3|的图象;②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为;③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.26.某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?
参考答案一、选择题(每题4分,共48分)1、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.2、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.3、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.4、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.5、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6、C【分析】设点P的坐标,表示出四边形OAPB的面积,由反比例函数k是定值,当点P的横坐标逐渐减小时,四边形OAPB的面积逐渐减小.【详解】点A(0,2),则OA=2,
设点,则,
,
∵为定值,
∴随着点P的横坐标的逐渐减小时,四边形AONP的面积逐渐减小
故选:C.【点睛】考查反比例函数k的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.7、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.8、B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,
∴二次函数y1有最小值,故①错误;
观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;
当x=-2时,二次函数y1的值小于0,故③错误;
当x<-3或x>-1时,抛物线在直线的上方,
∴m的取值范围为:m<-3或m>-1,故④正确.
故选B.【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.9、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.10、D【解析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.11、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.12、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.二、填空题(每题4分,共24分)13、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.14、1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.15、-1【解析】设另一根为,则1·=-1,解得,=-1,故答案为-1.16、1.【解析】试题分析:易得底数为8的幂的个位数字依次为8,2,1,6,以2个为周期,个位数字相加为0,呈周期性循环.那么让1012除以2看余数是几,得到相和的个位数字即可:∵1012÷2=503…1,∴循环了503次,还有两个个位数字为8,2.∴81+81+83+82+…+81012的和的个位数字是503×0+8+2=11的个位数字.∴81+81+83+82+…+81012的和的个位数字是1.考点:探索规律题(数字的变化类——循环问题).17、4π.【分析】根据扇形的弧长公式解答即可得解.【详解】设扇形弧长为l,面积为s,半径为r.∵,∴l=4π.故答案为:4π.【点睛】本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题.18、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.三、解答题(共78分)19、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)利用列举方法找出所有的可能情况,再找两位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【详解】解:(1)甲去A公园游玩的概率为;故答案为:.(2)列树状图如下:共有9种等可能结果,其中甲、乙恰好在同一个公园游玩的有3种,∴其概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件的结果数目,然后利用概率公式计算事件的概率.20、,,.【分析】根据题意和题目中的数据,利用勾股定理,可以求得AB的长,根据锐角三角函数可以求得∠A的度数,进而求得∠B的度数,本题得以解决.【详解】∵,,,∴,.∴,.∴.答:,,.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用勾股定理和数形结合的思想解答.21、(1);(2)x1=,x2=.【分析】(1)sin30°=,cos45°=,sin230°+cos245°=()2+()2=(2)用公式法:化简得,a=1,b=1,c=-3,b-4ac=13,∴x=.【详解】解:(1)原式=()2+()2=;(2)x(x+1)=3,x2+x﹣3=0,∵a=1,b=1,c=﹣3,b﹣4ac=1﹣4×1×(﹣3)=13,∴x==,∴x1=,x2=.【点睛】本题的考点是三角函数的计算和解一元二次方程.方法是熟记特殊三角形的三角函数及几种常用的解一元二次方程的方法.22、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)【解析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.23、(1);(2)【分析】(1)通过证明,再根据相似三角形对应边成比例即可求出;(2)设AB=m,由是中边上的中点,可得,进而得出,根据题意,进而得出【详解】解:(1)∵为的中点,,∴为的中点,,∴,∴,∴,∴,∴.(2)∵,∴.∵,∴.∵,∴.【点睛】本题考查了相似三角形的判定及性质和三角形的中位线定理,熟练掌握相关性质结合题目条件论证是解题的关键.24、(2)证明见解析;(2)①3;②y=(x﹣2)2﹣2.【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;(2)①函数的对称轴为:x=2,根据函数的对称轴知,m=3,即可求解;②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式并解得:a=2,即可求解.【详解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,故无论a取何值,原方程总有两个不相等的实数根;(2)①函数的对称轴为:x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第十三课 我爱家乡山和水(教学实录)二年级道德与法治上册同步高效课堂系列(统编版)
- 《北京奥运会纪实》课件
- 通史版2024高考历史一轮复习第12单元第2讲文艺复兴与宗教改革课时作业含解析
- 2025年长沙货运从业资格证考试题目及答案详解
- 2025年萍乡货运从业资格证怎么考
- 2025年西安货运资格证考试中心
- 2025年黑龙江货运从业资格证模拟考试答案
- 2025年西藏年货运从业资格证考试试题及答案
- 中国钓鱼图案拼图项目投资可行性研究报告
- 2025超低氮燃气蒸汽锅炉节能改造项目合同
- 初中中考历史试题
- 工程质量保证体系和保证措施
- 丰田工作方法精髓-问题解决法(八步法)剖析(课堂PPT)
- 水厂管网工程施工管理工作报告doc
- 综合美食广场招商方法
- 排序算法集成-杉杉
- 产品报价审批表
- 基于s7200狭窄隧道汽车双向行的plc控制
- 青年教师培养策略的研究
- 新课程设计报告
- 上海中考考纲单词和短语词组(配音标)
评论
0/150
提交评论