版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.2.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.3.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1 B.2 C.-1或2 D.-1或2或14.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3605.函数与,在同一坐标系中的图象可能是()A.B.C.D.6.下列算式正确的是()A. B. C. D.7.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定8.下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式9.已知二次函数(为常数),当时,函数值的最小值为,则的值为()A. B. C. D.10.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.1个 B.3个 C.4个 D.5个11.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A. B. C. D.12.下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.14.如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则=_____________15.如图,在Rt△ABC中,,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.16.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.如图,四边形ABCD是矩形,,,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.三、解答题(共78分)19.(8分)如图,在中,分别是的中点,,连接交于点.(1)求证:;(2)过点作于点,交于点,若,求的长.20.(8分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.21.(8分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).22.(10分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.23.(10分)计算:|-|-+20200;24.(10分)如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线的解析式为.(1)如图一,若抛物线经过,两点,直接写出点的坐标;抛物线的对称轴为直线;(2)如图二:若抛物线经过、两点,①求抛物线的表达式.②若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.25.(12分)如图,已知中,,.求的面积.26.某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.
参考答案一、选择题(每题4分,共48分)1、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.2、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.3、D【分析】当a-1=0,即a=1时,函数为一次函数,与x轴有一个交点;当a﹣1≠0时,利用判别式的意义得到,再求解关于a的方程即可得到答案.【详解】当a﹣1=0,即a=1,函数为一次函数y=-4x+2,它与x轴有一个交点;当a﹣1≠0时,根据题意得解得a=-1或a=2综上所述,a的值为-1或2或1.故选:D.【点睛】本题考察了一次函数、二次函数图像、一元二次方程的知识;求解的关键是熟练掌握一次函数、二次函数的性质,从而完成求解.4、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.5、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,
我们易得函数y=ax2+a的图象关于y轴对称,可排除A;
当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;
当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,
函数y=(a≠0)的图象位于第二、四象限,可排除B;
故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.6、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A.,故不正确;B.,正确;C.,故不正确;D.,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.7、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.8、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:对空间实验室“天空二号”零部件的检查,采用全面调查的方式,A错误;了解炮弹的杀伤力,采用抽样调查的方式,B错误;对中央台“新闻联播”收视率的调查,采用抽样调查的方式,C错误;对石家庄市食品合格情况的调查,采用抽样调查的方式,D正确,故选:D.【点睛】本题考查全面调查与抽样调查,理解全面调查与抽样调查的特点是本题的解题关键.9、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为-3,列方程求解可得.【详解】∵,∴抛物线开口向上,且对称轴为,∴在时,有最小值-3,即:,解得,故选:B.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键.10、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b1﹣4ac>0,方程ax1+bx=0的两个根为x1=0,x1=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用11、A【解析】试题解析:是平行四边形,故选A.12、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.二、填空题(每题4分,共24分)13、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.14、9:4【分析】先证△ADF∽△BEF,可知,根据BE:CE=2:5和平行四边形的性质可得AD:BE的值,由此得解.【详解】解:∵BE:CE=2:5,
∴BE:BC=2:3
,即BC:BE=3:2
,∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,∴AD:BE=3:2,△ADF∽△BEF,∴.故答案为:9:4.【点睛】本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键.15、9【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD∽△BAC,∴,∴,∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.16、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.17、6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.18、.【分析】根据题意可以求得和的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与的面积之差的和,本题得以解决.【详解】解:连接AE,∵,,,∴,∴,∴,,∴,∴阴影部分的面积是:,故答案为.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(共78分)19、(1)见解析;(2)AN的长为2.【分析】(1)利用平行四边形的性质及中点的性质即可证得结论;(2)先判定四边形CDMN是平行四边形,再判断其为菱形,利用菱形的性质,判断△MNC为等边三角形,从而求得∠1=∠2=∠MND=30°,在中,利用特殊角,求出EN,进而求出线段AN的长.【详解】(1)在平行四边形ABCD中,∠B=∠ADC,AB=CD,∵M,N分别是AD,BC的中点,∴BN=BC=AD=DM,∴△ABN≌△CDM;(2)∵在平行四边形ABCD中,M,N分别是AD,BC的中点,∴,,∴四边形CDMN为平行四边形,∵在中,M为AD中点,∴MN=MD,∴平行四边形CDMN为菱形;∴∠MND=∠DNC=∠1=∠2,∵CE⊥MN,∠MND+∠DNC+∠2=90°,∴∠MND=∠DNC=∠2=30°,在中,∵PE=1,∠ENP=30°,∴EN=,在中,∵EN=,∠2=30°,NC=2EN=2,∵∠MNC=∠MND+∠DNC=60°,∴△MNC为等边三角形,又由(1)可得,MC=AN,∴AN=MC=NC=2,∴AN的长为2.【点睛】本题是四边形的综合题,考查了平行四边形的性质和判定、菱形的判定与性质、直角三角形的斜边中线与斜边的关系、等边三角形的性质和判定以及相似三角形的性质和判定,利用直角三角形中30°的角所对的直角边等于斜边的一半是求解的关键.20、(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3).【解析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出,即可证得CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,利用(1)的方法进行证明即可;(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得,的长,再根据,进行计算即可得.【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形对角线平分对角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)连接AC交BD于点O,CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键.21、广告牌的高度为54.6米.【分析】由题可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出关于CD的等式并解出,从而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的长度,最后用CE-CD即为所求.【详解】解:∵又,在中,即答:广告牌的高度为54.6米.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的关键.22、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出S△BDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MB′⊥BG,用B′M代替BM,即可得出最小值的情况,再将直线BG、直线B′C的解析式求出,求得M点坐标和∠CGB的度数,再根据∠CGB的度数利用三角函数得出最小值B′C的值.【详解】解:(1)∵抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a=1,b=-2,c=-3,∴故该抛物线解析式为:.(2)令,
∴x1=-1,x2=3,
即B(3,0),
设直线BC的解析式为y=kx+b′,将B、C代入得:k=,1,b′=-3,∴直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),∴PD=(a-3)-(a2-2a-3)=-a2+3aS△BDC=S△PDC+S△PDB=PD×3=,∴当a=时,△BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MB′⊥BG,∴B′M=BM,当C、M、B′在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,∵B′C⊥BG故直线B′C解析式为为,令y=0,则x=,∴B′C与x轴交点为(,0)∵OG=,OB=3,∴∠CGB=60°,∴B′C=CGsin∠CGB==,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.23、【分析】先根据绝对值的意义、二次根式的性质、零指数幂的意义逐项化简,再合并同类二次根式即可.【详解】原式==.【点睛】本题考查了实数的混合运算,正确化简各数是解答本题的关键.24、(1)(4,8);x=6;(2)①;②(6,4);(3)或【分析】(1)根据矩形的性质即可求出点A的坐标,然后根据抛物线的对称性,即可求出抛物线的对称轴;(2)①将A、C两点的坐标代入解析式中,即可求出抛物线的表达式;②先利用待定系数法求出直线AC的解析式,然后设点E的坐标为,根据坐标特征求出点G的坐标,即可求出EG的长,利用二次函数求最值即可;(3)画出图象可知:当x=4时,若抛物线上的对应点位于点B的下方或当x=8时,抛物线上的对应点位于D点上方时,抛物线与矩形没有公共点,将x=4和x=8分别代入解析式中,列出不等式,即可求出b的取值范围.【详解】解:(1)∵矩形的三个顶点、、∴点A的横坐标与点B的横坐标相同,点A的纵坐标与点D的纵坐标相同∴点A的坐标为:(4,8)∵点A与点D的纵坐标相同,且A、D都在抛物线上∴点A和点D关于抛物线的对称轴对称∴抛物线的对称轴为:直线.故答案为:(4,8);x=6;(2)①将A、C两点的坐标代入,得解得:故抛物线的表达式为;②设直线AC的解析式为y=kx+c将A、C两点的坐标代入,得解得:∴直线AC的解析式为设点E的坐标为,∵EG⊥AD,AD∥x轴∴点E和点G的横坐标相等∵点G在抛物线上∴点G的坐标为∴EG===∵∴当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学学校章程
- 肇庆医学高等专科学校《古建测绘与制图》2023-2024学年第一学期期末试卷
- 区块链技术应用前景定量分析报告
- 财税规划报告模板
- DB2201T 66.5-2024 肉牛牛舍建设规范 第5部分:育肥牛
- 专业案例(动力专业)-专业案例(动力专业)押题密卷2
- 二零二五年酒店客房租赁及场地使用规则协议3篇
- 阳泉师范高等专科学校《工程测量综合实训》2023-2024学年第一学期期末试卷
- 二零二五版房地产项目整合营销策划合同3篇
- 二零二五年快餐连锁餐饮外包合作协议书2篇
- 菏泽2024年山东菏泽市中心血站招聘15人笔试历年典型考点(频考版试卷)附带答案详解版
- 供热通风与空调工程施工企业生产安全事故隐患排查治理体系实施指南
- 精-品解析:广东省深圳市罗湖区2023-2024学年高一上学期期末考试化学试题(解析版)
- 记账实操-基金管理公司的会计处理分录示例
- 中国慢性便秘诊治指南
- 儿童流感诊疗及预防指南(2024医生版)
- 沐足行业严禁黄赌毒承诺书
- 2025年蛇年红色喜庆中国风春节传统节日介绍
- 河北省承德市2023-2024学年高一上学期期末物理试卷(含答案)
- 山西省2024年中考物理试题(含答案)
- FZ/T 81024-2022机织披风
评论
0/150
提交评论