




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为A. B. C.2 D.12.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.3.将点A(﹣3,4)绕原点顺时针方向旋转180°后得到点B,则点B的坐标为()A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(﹣3,﹣4)4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是().A.; B.; C.; D..5.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.46.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.168.小苏和小林在如图所示①的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图所示②.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点;B.小苏跑全程的平均速度大于小林跑全程的平均速度;C.小苏前15s跑过的路程大于小林前15s跑过的路程;D.小林在跑最后100m的过程中,与小苏相遇2次;9.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.10.某校为了了解九年级学生的体能情况,随机抽取了名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有名学生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是()A. B.C. D.二、填空题(每小题3分,共24分)11.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.12.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是______.(结果保留)13.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程有解的概率是__________。14.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)15.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.16.若点A(-2,a),B(1,b),C(4,c)都在反比例函数的图象上,则a、b、c大小关系是________.17.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.18.计算:=______.三、解答题(共66分)19.(10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?20.(6分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.求(1)线段与的差值是___(2)的长度.21.(6分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的22.(8分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.23.(8分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)当m为最大的整数时,解这个一元二次方程.24.(8分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.25.(10分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠.各商场的优惠条件如下:甲商场优惠条件:第一台按原价收费,其余的每台优惠;乙商场优惠条件:每台优惠.设公司购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?26.(10分)如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式.
参考答案一、选择题(每小题3分,共30分)1、A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD=,故选A.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.2、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.3、A【分析】根据点A(﹣3,4)绕坐标原点旋转180°得到点B,即可得出答案.【详解】解:根据点A(﹣3,4)绕坐标原点旋转180°得到点B,可知A、B两点关于原点对称,∴点B坐标为(3,﹣4),故选:A.【点睛】本题考查坐标与图形变换—旋转,解题关键是熟练掌握旋转的旋转.4、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:、左边得出的是的方向不是单位向量,故错误;、符合向量的长度及方向,正确;、由于单位向量只限制长度,不确定方向,故错误;、左边得出的是的方向,右边得出的是的方向,两者方向不一定相同,故错误.故选:.【点睛】本题考查了向量的性质.5、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.6、B【分析】①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.【详解】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.∴③④⑤正确.故选B.【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.7、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、D【分析】依据函数图象中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系,即可得到正确结论.【详解】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;
故选:D.【点睛】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.10、B【分析】用样本中次数在30~35次之间的学生人数所占比例乘以九年级总人数可得.【详解】解:该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是×150=25(人),故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二、填空题(每小题3分,共24分)11、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.12、-1【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O−S正方形ABCD)=×(4π−4)=π−1,故答案为π−1.【点睛】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.13、【分析】画树状图展示所有36种等可能的结果数,再找出使,即的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中使,即的有19种,
方程有解的概率是,故答案为:.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件的结果数目m,然后根据概率公式求出事件的概率.14、【解析】过点分别作轴,轴,轴,轴,轴,……垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出……即可求解.【详解】解:过点分别作轴,轴,轴,轴,轴,……垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为:点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为:【点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.15、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.16、a>c>b【分析】根据题意,分别求出a、b、c的值,然后进行判断,即可得到答案.【详解】解:∵点A、B、C都在反比例函数的图象上,则当时,则;当时,则;当时,则;∴;故答案为:.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).
连接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC为半径,
∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.18、4【分析】直接利用零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=1+3=4.故答案为:4.【点睛】此题主要考查了零指数幂的性质和绝对值的性质,正确化简各数是解题关键.三、解答题(共66分)19、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)根据图象可得:当,,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;∴,解得:,∴与之间的函数关系式为;(2)由题意得:,整理得:,解得:.,∵让顾客得到更大的实惠,∴.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.20、96【分析】如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,根据轴对称的性质得:D'E'=DC=E'F'=9,表示GH,EH,BE的长,证明△EGH∽△EAB,则,可得x的值,即可求出线段、及FG的长,故可求解.【详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x=7-1=6.【点睛】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.21、(1)图详见解析,E(3,3),F(3,﹣1);(2)详见解析.【分析】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,然后写出E、F的坐标即可;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到.【详解】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,如图即为所求,点E、F的坐标为;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到,如图即为所求.【点睛】本题考查了图形的旋转、位似中心图形的画法,掌握理解旋转的定义和位似中心的定义是解题关键.22、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F点代入y=kx可得:.②当k>0时,同理可得k=1.故综上:.(3)记直线与x、y轴的交点为点D、C,则,,①当⊙B在直线CD右侧时,如下图所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直线与⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半径为,∴.当直线CD与⊙B相切时,,因为直线CD与⊙B相离,故BN>,此时BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此时可利用勾股定理算得BD<,<=,则<<.②当⊙B在直线CD左侧时,同理可得:<<.故综上:<<或<<.【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.23、(1)m<且m≠0;见详解;(2),,见详解.【分析】(1)直接根据一元二次方程根的判别式列出不等式组求解即可;(2)由(1)得m的最大整数值,然后代入一元二次方程求解即可.【详解】解:(1)由题意得∴m<且m≠0;(2)∵m为最大的整数,∴m=-1,∴原方程为:-x2-x+1=0,即x2+x-1=0,∴,.【点睛】本题主要考查一元二次方程根的判别式及解法,熟练掌握知识点是解题的关键.24、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.25、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠;当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【分析】(1)根据“费用=每台费用台数”分别建立等式即可;(2)分别根据求解即可;(3)先列出运费与a的关系式,再根据函数的性质求出最值即可.【详解】(1)由题意得:;(或);(或)(2)设学校购买台电脑,若两家商场收费相同,则:,(或)解得即当购买台时,两家商场的收费相同;若到甲商场购买更优惠,则:解得即当购买电脑台
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑材料与构造综合知识考试试题及答案
- 2025年职业教育法与管理的知识与应用考试卷及答案
- 2025年广告传播学考研试题及答案
- 2025年甘肃省平凉市灵台县新开乡招聘大学生村文书笔试参考题库及参考答案详解
- 物资进出仓库管理制度
- 牲畜饲养繁殖管理制度
- 特殊单元护理管理制度
- 特种作业施工管理制度
- 特色培训基地管理制度
- 狠抓项目资金管理制度
- 视觉设计心理学-洞察及研究
- 安徽宣城职业技术学院招聘笔试真题2024
- 2025年江苏徐州市泉山数据有限公司招聘笔试冲刺题(带答案解析)
- 重庆市大渡口区2023-2024学年四年级下学期数学期末测试卷(含答案)
- 2025年高考全国一卷写作范文4篇
- 全省一体化政务平台AI大模型应用方案
- 医院负面清单管理制度
- 11.3 一元一次不等式组 课件 2024-2025学年人教版初中数学七年级下册
- 2025年广西公需科目答案03
- 自然辩证法论述题146题带答案(可打印版)
- GA∕T 1699-2019 法庭科学 复制笔迹检验指南
评论
0/150
提交评论