2022-2023学年福建省福州马尾区四校联考数学九上期末达标检测模拟试题含解析_第1页
2022-2023学年福建省福州马尾区四校联考数学九上期末达标检测模拟试题含解析_第2页
2022-2023学年福建省福州马尾区四校联考数学九上期末达标检测模拟试题含解析_第3页
2022-2023学年福建省福州马尾区四校联考数学九上期末达标检测模拟试题含解析_第4页
2022-2023学年福建省福州马尾区四校联考数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程=15,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成2.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°3.下列式子中,为最简二次根式的是()A. B. C. D.4.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A,B的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根据所测数据求得A,B两树距离的有()A.1组 B.2组 C.3组 D.4组5.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40° B.50° C.60° D.70°6.如图,在中,点为边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为()A. B. C. D.7.如图,空心圆柱的俯视图是()A. B. C. D.8.在一块半径为的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长()A. B. C. D.9.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)10.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2二、填空题(每小题3分,共24分)11.是关于的一元二次方程的一个根,则___________12.三角形的三条边分别为5,5,6,则该三角形的内切圆半径为__________13.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________14.已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6cm,则d=_____cm;15.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为__________.16.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.17.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.18.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.三、解答题(共66分)19.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由改为,已知原传送带长为米.(1)求新传送带的长度;(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由.(参考数据:,.)20.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.21.(6分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.22.(8分)根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.23.(8分)如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.(1)试猜想直线DH与⊙O的位置关系,并说明理由;(2)若AE=AH,EF=4,求DF的值.24.(8分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?25.(10分)(1)解方程:(配方法)(2)已知二次函数:与轴只有一个交点,求此交点坐标.26.(10分)如图,已知、两点的坐标分别为,,直线与反比例函数的图象相交于点和点.(1)求直线与反比例函数的解析式;(2)求的度数;(3)将绕点顺时针方向旋转角(为锐角),得到,当为多少度时,并求此时线段的长度.

参考答案一、选择题(每小题3分,共30分)1、C【解析】题中方程表示原计划每天铺设管道米,即实际每天比原计划多铺设米,结果提前天完成,选.2、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、B【分析】利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4、C【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB的度数和AC的长,∴利用∠ACB的正切可求出AB的长,故①能求得A,B两树距离,∵AB//EF,∴△ADB∽△EDF,∴,故②能求得A,B两树距离,设AC=x,∴AD=CD+x,AB=,AB=;∵已知CD,∠ACB,∠ADB,∴可求出x,然后可得出AB,故③能求得A,B两树距离,已知∠F,∠ADB,FB不能求得A,B两树距离,故④求得A,B两树距离,综上所述:求得A,B两树距离的有①②③,共3个,故选:C.【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.5、B【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.【详解】解:如图,连接BD.∵AB是直径,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故选:B.【点睛】本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.6、C【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点从点出发,线段的长度为,运动时间为的,根据图象可知,当=0时,y=2∴CD=2∵点为边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=时,y最小,即CP最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P运动的路程DA+AP=所以此时AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故选C.【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.7、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是三个水平边较短的矩形,中间矩形的左右两边是虚线,故选:D.【点睛】本题考查了三视图,俯视图是指从上往下看得到的图形。注意:看的见的线画实线,看不见的线画虚线.8、D【分析】画出图形,作于点,利用垂径定理和等边三角形的性质求出AC的长即可得出AB的长.【详解】解:依题意得,连接,,作于点,∵,∴,,∴,∴.故选:D.【点睛】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.9、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),

则点B关于x轴的对称点C的坐标是(2,-2),故答案为D10、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.二、填空题(每小题3分,共24分)11、-1【分析】将x=-1代入一元二次方程,即可求得c的值.【详解】解:∵x=-1是关于x的一元二次方程的一个根,

∴,∴c=-1,

故答案:-1.【点睛】本题考查了一元二次方程的解的定义,是基础知识比较简单.12、1.5【分析】由等腰三角形的性质和勾股定理,求出CE的长度,然后利用面积相等列出等式,即可求出内切圆的半径.【详解】解:如图,点O为△ABC的内心,设OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面积相等,则,∴,∴,∴;故答案为:1.5;【点睛】本题考查的是三角形的内切圆与内心,三线合一定理,勾股定理,掌握三角形的面积公式进行计算是解题的关键.13、【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC是30°直角三角形,设DE=a,将OC,CD用a表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a,CN=CE=a∴OC=CN=∴故答案为.【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.14、3.【详解】根据题意得:a:b=c:d,∵a=3cm,b=4cm,c=6cm,∴3:4=6:d,∴d=3cm.考点:3.比例线段;3.比例的性质.15、【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.【详解】解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)=;故答案为:.【点睛】此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.16、(—2,1)或(2,—1)【分析】根据位似图形的性质,只要点A的横、纵坐标分别乘以或﹣即可求出结果.【详解】解:∵点A(-6,3),B(9,0),以原点O为位似中心,相似比为把△ABO缩小,∴点A对应点的坐标为(—2,1)或(2,—1).故答案为:(—2,1)或(2,—1).【点睛】本题考查了位似图形的性质,属于基本题型,注意分类、掌握求解的方法是关键.17、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。18、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共66分)19、(1)新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由见解析【分析】(1)根据正弦的定义求出AD,根据直角三角形30度角的性质求出AC;

(2)根据正切函数的定义求出CD,求出PC的长度,比较大小得到答案.【详解】(1)在Rt△ABD中,∠ADB=90,,sin∠ABD=,∴,在Rt△ACD中,∠ADC=90°,∠ACD=30°,

∴AC=2AD=8,

答:新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,

理由如下:在Rt△ABD中,∠ADB=90,∠ABD=45°,

∴BD=AD=4,在Rt△ACD中,∠ADC=90,∠ACD=30°,AC=8,∴(米),∴CB=CD-BD≈2.8,

PC=PB-CB≈2.2,

∵2.2>2,

∴距离B点5米的货物不需要挪走.【点睛】本题实际考查的是解直角三角形的应用,在两个直角三角形拥有公共边的情况下,先求出这条公共边是解答此类题目的关键.20、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)不可能;随机;;(2)【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得.【详解】(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为,故答案为不可能,随机,;(2)画树状图如下:由树状图可知共12种可能,其中“小惠被抽中”有6种可能,所以“小惠被抽中”的概率是:.【点睛】本题考查了随机事件、不可能事件、列表或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22、见解析,【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:分别记厨余垃圾、可回收垃圾、有害垃圾、其它垃圾为A、B、C、D,画树状图如下:由树状图知,共有12种等可能结果,其中小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的结果有2种,所以小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率为=.【点睛】本题主要考查的是利用树状图求解概率,解此题需要正确的运用树状图,所以掌握树状图是解此题的关键.23、(1)直线与⊙O相切,理由见解析;(2)DF=6【分析】(1)连接,根据等腰三角形的性质可得,,可得,即可证明OD//AC,根据平行线的性质可得∠ODH=90°,即可的答案;(2)连接,由圆周角定理可得∠B=∠E,即可证明∠C=∠E,可得CD=DE,由AB是直径可得∠ADB=90°,根据等腰三角形“三线合一”的性质可得HE=CH,BD=CD,可得OD是△ABC的中位线,即可证明,根据相似三角形的性质即可得答案.【详解】(1)直线与⊙O相切,理由如下:如图,连接,∵,∴,∵,∴,∴,,∵,∴∠ODH=∠DHC=90°,∴DH是⊙O的切线.(2)如图,连接,∵∠B和∠E是所对的圆周角,∴,∵∴∴DC=DE∵,∴HE=CH设AE=AH=x,则,,∵是⊙O的直径,∴∠ADB=90°∵AB=AC∴BD=CD∴OD是的中位线,,,∴,∴,∵EF=4∴DF=6【点睛】本题考查等腰三角形的性质、圆周角定理、切线的判定与性质及相似三角形的判定与性质,经过半径的外端点并且垂直于这条半径的直线是圆的切线,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相关性质及定理是解题关键.24、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元【解析】(1)用每件的利润乘以销售量即可得到每天的销售利润,即然后化为一般式即可;

(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;

(3)求所对应的自变量的值,即解方程然后检验即可.【详解】(1)w与x的函数关系式为:(2)∴当时,w有最大值.w最大值为1.答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.(3)当时,解得:∵想卖得快,不符合题意,应舍去.答:销售单价应定为100元.25、(1)(2),交点坐标为【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:再利用求解的值,最后求解交点的坐标即可.【详解】解:(1),(2)二次函数:与轴只有一个交点,这个交点为抛物线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论