下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数2.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.3.如图,、、是的切线,、、是切点,分别交、于、两点.如,则的度数为()A. B. C. D.4.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.25.cos60°的值等于()A. B. C. D.6.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.7.已知点为反比例函数图象上的两点,当时,下列结论正确的是()A. B.C. D.8.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.9.已知,且α是锐角,则α的度数是()A.30° B.45° C.60° D.不确定10.在中,,,,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.12.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.13.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.14.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____15.如图所示,中,,是中点,,垂足为点,与交于点,如果,那么______.16.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.17.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.18.计算:______.三、解答题(共66分)19.(10分)某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)当每件衬衫降价多少元时,商场每天获利最大,每天获利最大是多少元?20.(6分)将矩形如图放置在平面直角坐标系中,为边上的一个动点,过点作交边于点,且,的长是方程的两个实数根,且.(1)设,,求与的函数关系(不求的取值范围);(2)当为的中点时,求直线的解析式;(3)在(2)的条件下,平面内是否存在点,使得以,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,已知是的直径,点是延长线上一点过点作的切线,切点为.过点作于点,延长交于点.连结,,,.若,.(1)求的长。(2)求证:是的切线.(3)试判断四边形的形状,并求出四边形的面积.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).(1)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C'(2)求点C在旋转过程中所经过的路径的长.23.(8分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.24.(8分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).25.(10分)如图,在中,AD是BC边上的高,。(1)求证:AC=BD(2)若,求AD的长。26.(10分)根据要求完成下列题目:
(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差2、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.3、C【分析】连接OA、OB、OE,由切线的性质可求出∠AOB,再由切线长定理可得出∠COD=∠AOB,可求得答案.【详解】解:连接OA、OE、OB,所得图形如下:由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.4、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.5、A【解析】试题分析:因为cos60°=,所以选:A.考点:特殊角的三角比值.6、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.7、A【分析】根据反比例函数在第一象限内的增减性即可得出结论.【详解】∵反比例函数在时,y随着x的增大而减小,∴当时,故选:A.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的性质是解题的关键.8、A【分析】由题意可得,共有10种等可能的结果,其中从口袋中任意摸出一个球是白球的有5种情况,利用概率公式即可求得答案.【详解】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选A.【点睛】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.9、C【分析】根据sin60°=解答即可.【详解】解:∵α为锐角,sinα=,sin60°=,∴α=60°.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.10、D【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,
∴,∴,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.二、填空题(每小题3分,共24分)11、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.12、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.13、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、70°或120°【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°,,∴,∴,故答案为70°或120°.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.15、4【分析】根据直角三角形中线性质得CM=,根据相似三角形判定得△ABC∽△MBH,△AOC∽△HOM,根据相似三角形性质可得.【详解】因为中,,是中点,所以CM=又因为,所以所以△ABC∽△MBH,△AOC∽△HOM,所以所以故答案为:4【点睛】考核知识点:相似三角形.理解判定和性质是关键.16、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.17、【分析】根据题意利用相似三角形判定≌,并求出OC的值即有的最小值从而求解.【详解】解:如图∵∴≌∴∴点的路径是一段弧(以点为圆心的圆上)∴∴,∵∴∴所以的最小值【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.18、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:.故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.三、解答题(共66分)19、(1)每件应该降价20元;(2)当每件降价15元时,每天获利最大,且获利1250元【分析】(1)设每件应该降价元,则每件利润为元,此时可售出数量为件,结合盈利1200元进一步列出方程求解即可;(2)设每件降价元时,每天获利最大,且获利元,然后进一步根据题意得出二者的关系式,最后进一步配方并加以分析求解即可.【详解】(1)设每件应该降价元,则:,整理可得:,解得:,,∵要尽量减少库存,在获利相同的情况下,降价越多,销售越快,∴每件应该降价20元,答:每件应该降价20元;(2)设每件降价元时,每天获利最大,且获利元,则:,配方可得:,∵,∴当时,取得最大值,且,即当每件降价15元时,每天获利最大,且获利1250元,答:当每件降价15元时,每天获利最大,且获利1250元.【点睛】本题主要考查了一元二次方程与二次函数的实际应用,根据题意正确找出等量关系是解题关键.20、(1);(2)或;(3)存在.,,.【分析】(1)利用因式分解法解出一元二次方程,得到OA、OB的长,证明△AOE∽△ECD,根据相似三角形的性质列出比例式,整理得到y与x的函数关系;(2)列方程求出OE,利用待定系数法求出直线AE的解析式;(3)根据平行四边形的性质、坐标与图形性质解答.【详解】(1),,∴解得,.∵,∴,.∵,∴∠AEO+∠DEC=90,又∵∠AEO+∠OAE=90,∴∠OAE=∠CED,又∠AOE=∠ECD=90,∴,∴,∴,∴.(2)当为的中点时,.∵,∴.解得,.当时,设直线的解析式为,把A(0,8),E(4,0)代入得解得,∴;当时,设直线的解析式为,把A(0,8),E(8,0)代入得解得,∴直线的解析式为或.(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).【点睛】本题考查的是一次函数的性质、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.21、(1)BD=2;(2)见解析;(3)四边形ABCD是菱形,理由见解析.菱形ABCD得面积为6.【分析】(1)根据题意连结BD,利用切线定理以及勾股定理进行分析求值;(2)根据题意连结OB,利用垂直平分线性质以及切线定理进行分析求值;(3)由题意可知四边形ABCD是菱形,结合勾股定理利用菱形的判定方法进行求证.【详解】解:(1)连结BDDE=CE∴∠DCE=∠EDC∵⊙O与CD相切于点D,∴OD⊥DC,∠ODC=90°∠ODE+∠CDE=90°∠DOC+∠DCO=90°,∠DCE=∠EDC∠ODE=∠DOEDE=OE∵在⊙O中,OE=ODOE=OD=DE∠DOE=60°∵在⊙O中,AE⊥DBBD=2DF∵在Rt△COE中,∠ODF-90°-∠DOE=90°-60°=30°∴OD=2OF∵EF=1,设半径为R,OF=OE-FE=R-1∴R=2(R-1),解得R=2∴BD=2DF=2(2)连结OB∵在⊙O中,AE⊥DBBF=DFAC是DB的垂直平分线∴OD=0B,CD=CB∴∠ODB=∠OBD,∠CDB=∠CBD∴∠ODB+∠CDB=∠OBD+∠CBD即∠ODC=∠OBC由(1)得∠ODC=90°∴∠OBC=90°即OB⊥BC又OB是⊙O的半径∴CB是⊙O的切线(3)四边形ABCD是菱形,理由如下∵由(1)得在⊙O中,∠DOE=60°,∠ODC=90°∴∠DAO=∠DOE=30°∵由(1)得∠ODC=90°∴∠OCD=90°-∠DOC=90°-60°=30°∴∠DAO=∠OCD∴DA=CD∵由(2)得AD=AB,CD=BC∴AD=DC=BC=AB∴四边形ABCD是菱形∵在Rt△AFD中,DF=,∠DAC=30°∴AD=2DF=2∵四边形ABCD是菱形∴AC=2AF=6,BD=2DF=2∴菱形ABCD得面积为:×AC×DB=×6×2=6.【点睛】本题考查切线的性质、等边三角形的判定和性质、菱形的判定和性质以及解直角三角形,熟练掌握并综合利用其进行分析是解题关键.22、(1)见解析;(2)【解析】(1)根据网格结构找出点A、B、C绕点O顺时针旋转90∘后的对应点的位置,然后顺次连接即可.(2)在旋转过程中,C所经过的路程为下图中扇形的弧长,即利用扇形弧长公式计算即可.【详解】(1)如图,连接OA、OB、OC并点O为旋转中心,顺时针旋转90°得到A'、B'、C',连接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋转过程中所经过的路程为扇形的弧长;所以【点睛】本题考查了旋转作图以及扇形的弧长公式的计算,作出正确的图形是解本题的关键.23、【分析】设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,由勾股定理得出,解得a=,证明△EDG∽△GCF,得出比例线段,求出CF.则可求出EF.由四边形面积公式可求出答案.【详解】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,∵∠C=90°,∴Rt△BCG中,,∴,∴a=,∴DG=CG=,∴BG=OB+OG=2=3,由折叠可得∠EGD=∠EGO,∠OGF=∠FGC,∴∠EGF=90°,∴∠EGD+∠FGC=90°,∵∠EGD+∠DEG=90°,∴∠FGC=∠DEG,∵∠EDG=∠GCF=90°,∴△EDG∽△GCF,∴,∴.∴CF=1,∴FO=1,∴EF=3,由折叠可得,∴∠BOE=∠A=90°,∵点B,O,G在同一条直线上,点E,O,F在另一条直线上,∴EF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年武汉铁路职业技术学院人才引进考试真题
- 2023年龙里县人民医院招聘人员考试真题
- 2023年河南大学河南戏剧艺术学院招聘表演类专任教师考试真题
- 2024年借款协议保证人义务明细
- 2024室内水磨石施工项目专项协议
- 《认识百分数》课件制作策略
- 厨房领军人才:2024厨师长聘请协议
- 2024年秋季课程:幼儿园5以内加减法
- 2024年新箱涵工程施工协议典范
- 人教版八年级英语下册 Unit 4 基础练习
- 检察机关保密知识讲座
- 产品市场推广效果报告
- Java程序设计项目式教程 教案 单元10 Java图形用户界面设计
- 【小学心理健康教育分析国内外文献综述4100字】
- 高考复习递推思维方法在物理高考题中的应用
- 枪械介绍课件
- 信用证条款编号和中英文对照
- 电脑供货方案、售后服务方案
- 破碎锤施工方案
- 市政工程交通导行施工方案
- 社区综合养老服务中心委托运营协议
评论
0/150
提交评论