2023届浙江省绍兴市柯桥区六校联盟八年级数学第一学期期末质量跟踪监视试题含解析_第1页
2023届浙江省绍兴市柯桥区六校联盟八年级数学第一学期期末质量跟踪监视试题含解析_第2页
2023届浙江省绍兴市柯桥区六校联盟八年级数学第一学期期末质量跟踪监视试题含解析_第3页
2023届浙江省绍兴市柯桥区六校联盟八年级数学第一学期期末质量跟踪监视试题含解析_第4页
2023届浙江省绍兴市柯桥区六校联盟八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在中,,D是AB上的点,过点D作

交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③ B.①②④ C.②③④ D.①②③④2.过点作直线,使它与两坐标轴围成的三角形面积为,这样的直线可以作()A.条 B.条 C.条 D.条3.计算÷×结果为()A.3 B.4 C.5 D.64.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.5.使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣26.点,都在直线上,则与的大小关系是()A. B. C. D.不能比较7.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④8.不等式3(x﹣1)≤5﹣x的非负整数解有(

)A.1个B.2个C.3个D.4个9.某工程队在城区内铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“……”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“……”表示的缺失的条件应补为()A.每天比原计划多铺设12米,结果延期20天完成B.每天比原计划少铺设12米,结果延期20天完成C.每天比原计划多铺设12米,结果提前20天完成D.每天比原计划少铺设12米,结果提前20天完成10.若数据5,-3,0,x,4,6的中位数为4,则其众数为()A.4 B.0 C.-3 D.4、511.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,1212.七年级一班同学根据兴趣分成五个小组,并制成了如图所示的条形统计图,若制成扇形统计图,第1小组对应扇形圆心角的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.x减去y大于-4,用不等式表示为______.14.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,大正方形的面积为13,则小正方形的面积为________.15.已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为_________.16.使有意义的的取值范围是_______.17.分解因式:=________.18.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.三、解答题(共78分)19.(8分)化简分式,并在、、、、中选一个你喜欢的数作为的值,求代数式的值20.(8分)如图,.求证:.21.(8分)甲开着小轿车,乙开着大货车,都从地开往相距的地,甲比乙晚出发,最后两车同时到达地.已知小轿车的速度是大货车速度的1.5倍,求小轿车和大货车的速度各是多少?22.(10分)如图,长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,连结AD,AF,FD.(1)若△ADF的面积是,△ABD的面积是6,求△ABD的周长;(2)设△ADF的面积是S1,四边形DBGF的面积是S2,试比较2S1与S2的大小,并说明理由.23.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,每套型一体机的价格比每套型一体机的价格多万元,且用万元恰好能购买套型一体机和套型一体机.(1)列二元一次方程组解决问题:求每套型和型一体机的价格各是多少万元?(2)由于需要,决定再次采购型和型一体机共套,此时每套型体机的价格比原来上涨,每套型一体机的价格不变.设再次采购型一体机套,那么该市至少还需要投入多少万元?24.(10分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.25.(12分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.已知,在中,,垂足分别为.(1)如图1,求证:;(2)如图2,点为的中点,连接.请判断的形状?并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.2、C【分析】先设出函数解析式,y=kx+b,把点P坐标代入,得-k+b=3,用含k的式子表示b,得b=k+3,求出直线与x轴交点坐标,y轴交点坐标,求三角形面积,根据k的符号讨论方程是否有解即可.【详解】设直线解析式为:y=kx+b,点P(-1,3)在直线上,-k+b=3,b=k+3,y=kx+3+k,当x=0时,y=k+3,y=0时,x=,S△=,,当k>0时,(k+3)2=10k,k2-4k+9=0,△=-20<0,无解;当k<0时,(k+3)2=-10k,k2+16k+9=0,△=220>0,k=.故选择:C.【点睛】本题考查的是直线与坐标轴围成的三角形面积问题,关键是用给的点坐标来表示解析式,求出与x,y轴的交点坐标,列出三角形面积,进行分类讨论.3、B【解析】===.故选B.4、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.5、D【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x+1≠0,即x≠﹣1.故选D.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.6、A【分析】利用一次函数的性质解决.直线系数,可知y随x的增大而增大,-4<1,则y1<y1.【详解】解:∵直线上,∴函数y随x的增大而增大,∵-4<1,∴y1<y1.故选:A.【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形,②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,

∴△ABC≌△EAD(SAS),①正确;

∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴,④正确;

又∵△AEC与△DEC同底等高,

∴,

∴,⑤不正确.

若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,

∴③不一定正确;

故正确的为:①②④.故选:D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.8、C【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.9、C【分析】由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.10、A【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】∵数据的中位数是1∴数据按从小到大顺序排列为-3,0,1,x,5,6∴x=1则数据1出现了2次,出现次数最多,故众数为1.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11、A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.12、C【分析】根据扇形圆心角的度数为本组人数与总人数之比,再乘以360°进行计算即可.【详解】由题意可得,第1小组对应扇形圆心角的度数为,故选C.【点睛】本题考查条形图和扇形图的相关计算,解题的关键是理解扇形圆心角与条形图中人数的关系.二、填空题(每题4分,共24分)13、x-y>-4【分析】x减去y即为x-y,据此列不等式.【详解】解:根据题意,则不等式为:;故答案为:.【点睛】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14、1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:由题意可知:每个直角三角形面积为,则四个直角三角形面积为:2ab;大正方形面积为a2+b2=13;小正方形面积为13-2ab∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21-13=8,∴小正方形的面积为13-8=1.故答案为:1.【点睛】此题主要考查了勾股定理的应用,熟练应用勾股定理理解大正方形面积为a2+b2=13是解题关键.15、25o【解析】试题分析:根据题意给出的已知条件可以得出△ABC和△ADE全等,从而得出∠B=∠D=25°.16、【分析】根据二次根式有意义以及分式有意义得条件进一步求解即可.【详解】由题意得:,及,∴且,即,故答案为:.【点睛】本题主要考查了分式与二次根式有意义的情况,熟练掌握相关概念是解题关键.17、【分析】根据提公因式法即可求解.【详解】=故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.18、1.【解析】试题分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.试题解析:设这个多边形是n边形.依题意,得n-3=10,∴n=1.故这个多边形是1边形考点:多边形的对角线.三、解答题(共78分)19、-3当=1时,原式=-2【分析】先将分式进行约分,再将除法转化为乘法进行约分,代值时,的取值不能使原式的分母,除式为0.【详解】解:原式=-3=-3=-3当=1时,原式=1-3=-2.【点睛】本题考查了分式的化简求值.关键是根据分式混合运算的顺序解题,代值时,字母的取值不能使分母,除式为0.20、证明见解析【分析】只需要通过AB=CD证得AC=BD利用SSS即可证明.【详解】解:∵AB=CD,BC=BC

∴AC=BD

∵AE=DF,CE=BF

∴△ACE≌△DBF(SSS).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21、大货车的速度为60km/h,则小轿车的速度为90km/h【分析】设大货车的速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“甲比乙晚出发,最后两车同时到达地”列出方程解答即可.【详解】解:设大货车的速度为xkm/h,则小轿车的速度为1.5xkm/h,根据题意可得:,解得:,经检验:是原方程的解,∴,答:大货车的速度为60km/h,则小轿车的速度为90km/h.【点睛】本题考查了分式方程的实际应用中的行程问题,解题的关键是读懂题意,找出等量关系,列出方程.22、(1)12;(2),见解析【分析】(1)长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,根据图形旋转性质,可得∠DAF=,且AD=AF,已知△ADF的面积是,可得AD=AF=5,,已知△ABD的面积是6,可得,即可求出AB和BD,进而求出△ABD的周长.(2)根据图形旋转的性质将S1和S2表示出来,分别利用了三角形面积公式和题型面积公式,再判断2S1-S2和0的大小关系,即可求解.【详解】(1)∵长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的∴∠DAF=90°那么∴AD2=25,AF=AD=5∴而,∴AB∙BD=12∴AB=3,BD=4∴故答案为:12(2)由(1)可知∴2S1=𝐴𝐷2∵∴四边形DBGF是梯形∵AB=GF,BD=AG在Rt△BAD中0∴【点睛】本题考查了图形旋转的性质,勾股定理解直角三角形,本题还利用了三角形面积公式和梯形面积公式.23、(1)型一体机的价格是万元,型一体机的价格是万元;(2)1800万元【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【详解】解:(1)设每套型一体机的价格为万元,每套型一体机的价格为万元.由题意可得,解得,答:每套型一体机的价格是万元,型一体机的价格是万元;(2)设该市还需要投入万元,,,随的增大而减小.,当时,有最小值,,答:该市至少还需要投入万元.【点睛】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.24、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.25、(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论