工业大数据的来源是什么-架构分析_第1页
工业大数据的来源是什么-架构分析_第2页
工业大数据的来源是什么-架构分析_第3页
工业大数据的来源是什么-架构分析_第4页
工业大数据的来源是什么-架构分析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

工业大数据的来源是什么_架构分析1.什么是工业大数据工业大数据是工业互联网的核心内容,是指在工业产业中,围绕典型智能制造模式的整个产品全生命周期各个环节产生的各类数据及相关技术和应用的总称。目前,随着工业信息化程度日益深化,工业大数据由之兴起,已经逐渐渗透于工业生产过程中生产调度优化、安全管理、提高生产效率等诸多方面。2.工业大数据的来源是工业大数据的主要来源有如下3类:(1)生产经营相关业务数据生产经营相关业务数据主要来自于传统企业信息化范围,存储在企业信息系统内部,包括传统工业设计和制造类软件、企业资源计划(ERP)、产品生命周期管理(PL

M)、供应链管理(S

CM)、客户关系管理(CRM)和环境管理系统(EMS)等。这些企业信息系统已累积了大量的产品研发数据、生产性数据、经营性数据、客户信息数据、物流供应数据及环境数据。此类数据是工业领域传统的数据资产,在移动互联网等新技术应用环境下正在逐步扩大范围。(2)设备物联数据设备物联数据主要指工业生产设备和目标产品在物联网运行模式下,实时产生收集的涵盖操作和运行情况、工况状态、环境参数等体现设备和产品运行状态的数据。此类数据是工业大数据新的、增长最快的来源。狭义的工业大数据即指该类数据,即工业设备和产品快速产生且存在时间序列差异的大量数据。(3)外部数据外部数据指与工业企业生产活动和产品相关的企业外部互联网来源数据,例如,评价企业环境绩效的环境法规、预测产品市场的宏观社会经济数据等。工业大数据技术是使工业大数据中蕴含的价值得以挖掘和展现的一系列技术与方法,包括数据规划、采集、预处理、存储、分析挖掘、可视化和智能控制等。工业大数据应用则是对特定的工业大数据集,集成应用工业大数据系列技术与方法,获得有价值信息的过程。工业大数据技术的研究与突破,其本质目标就是从复杂的数据集中发现新的模式与知识,挖掘得到有价值的新信息,从而促进制造型企业的产品创新,提升经营水平和生产运作效率以及拓展新型商业模式。3.工业大数据的架构分析工业大数据架构包含3个维度:生命周期与价值流、企业纵向层和IT价值链。(1)生命周期与价值流维度工业大数据架构中的生命周期与价值流维度涵盖了整个产品生命周期的各阶段,即研发与设计、生产、物流、销售、运维与服务5个阶段,其中,生产、物流和销售可进一步归类于生产与供应链领域,则生命周期与价值流维度包含了3个领域:研发与设计、生产与供应链及运维与服务3个领域。1)研发与设计领域:研发数据通过研发人员在研发设计过程中不断积累而成,其来源于产品生命周期各个环节,包括:用户需求大数据、研发知识大数据、产品重用大数据、研发协同大数据等,具有跨产品和跨行业、种类繁多的特性。实现基于大数据的个性化定制设计自动化传统企业产品种类、式样不多,可采用手工设计产品模型、生产样品,再进行量产的生产模式,但面对个性化、小批量生产的要求,传统模式将导致产品生产周期过长、成本过高。通过积累大量的产品设计模型数据,分析设计数据之间的关联,借助大数据技术及其他辅助设计工具可实现个性化定制设计及模型生成的自动化。2)生产与供应链领域:生产大数据不仅包括产品生产制造过程中采集的产品生产信息、订单信息、设备信息、控制信息、物料信息、人员工作排程,还包括企业内部管理信息流、资金流、产品生产上下游的供应商及客户管理等相关辅助生产管理的信息,生产数据的采集依托于企业已有资源管理、制造执行、工控管理、供应链管理、供应商管理、客户管理、商务管理等信息系统。能够实现网络化协同制造及制造业共享经济。通过互联网+

,进行生产资源在企业内或企业间的整合优化,实现企业内部的纵向协同制造或企业间的横向协同制造。通过互联网+共享经济,进行创新资源、生产能力、库存等生产资源的共享,实现制造业共享经济。3)运维与服务领域:运维与服务领域的数据来源有很多,主要包括:在客户允许的情况下,通过嵌在产品中的传感器采集的产品实时运行状态数据及周边环境数据;通过商务平台获得的产品销售数据、客户数据及相应的产品评价或使用反馈;客户投诉及相应处理记录;产品退货/返修记录及相应的维修记录。通过对这些数据进行分析、挖掘及预测,可帮助工业企业不断创新产品和服务,发展新的商业模式。通过监控、分析远程采集的产品实时运行状态数据,实现远程监控与管理、故障诊断及预测性维护等在线增值服务,可降低维护成本,提高产品利用率。通过分析设备的客户使用数据及周边环境数据,还可为用户提供延伸服务,扩展产品价值空间,实现以产品为核心的经营模式向

制造+服务的模式转变。通过分析客户产品评价或使用反馈、客户投诉,将有用的意见融入产品的设计及产品改进中,对客户投诉进行分类处理,可提高产品质量及售后服务质量,降低投诉率,提高客户满意度及忠诚度。通过分析产品退货或返修原因,及时采取有效措施,可提升产品质量,降低退货率及返修率。(2)企业纵向层级工业大数据架构的企业纵向层从物理域的角度自下而上共分为5层,分别为设备层、控制层、车间层、企业层和协同层。在设备层、控制层、车间层可利用物联网,基于信息物理系统实现智能工厂;在企业层,企业集成内部各种信息化应用,进行企业内部业务流程整合和改造,提升企业运行效率;协同层使用工业云等平台技术,实现企业外部协同制造及制造业服务化等创新业务模式。企业纵向维度可以分成信息物理系统、企业管理信息系统、互联平台系统3个子系统。(3)IT价值链大数据的价值通过数据的收集、预处理、分析、可视化和访问等活动来实现。在IT价值链维度上,大数据价值通过为大数据应用提供存放大数据的网络、基础设施、平台、应用工具及其他服务来实现,从而提高运营效率和支撑业务创新。大数据技术支撑的企业架构,参考TOGAF划分方法,可分成业务架构、信息系统架构成及IT技术架构3个层次。1)业务架构:业务架构定义了业务战略、管理、组织和关键业务流程,是企业全面的信息化战略和信息系统架构的基础,是数据、应用、技术架构的决定因素。2)信息系统架构:为充分发挥工业大数据价值,避免形成信息孤岛

,需要构建统一的信息系统架构,以实现各应用系统及数据的用户访问和互操作。基于工业大数据业务战略的信息系统架构是一个体系结构,它反映

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论