2023届山东省德州市禹城市数学八上期末联考模拟试题含解析_第1页
2023届山东省德州市禹城市数学八上期末联考模拟试题含解析_第2页
2023届山东省德州市禹城市数学八上期末联考模拟试题含解析_第3页
2023届山东省德州市禹城市数学八上期末联考模拟试题含解析_第4页
2023届山东省德州市禹城市数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.2.如图,在中,,将绕点逆时针旋转,使点落在点处,点落在点处,则两点间的距离为()A. B. C. D.3.在-,-π,0,3.14,0.1010010001,-3中,无理数的个数有()A.1个 B.2个 C.3个 D.4个4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=CD5.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E,连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为().A.52.5° B.60° C.67.5° D.75°6.如图,在下列四组条件中,不能判断的是()A.B.C.D.7.下列计算正确的是()A.a3·a4=a12 B.(a3)2=a5C.(-3a2)3=-9a6 D.(-a2)3=-a68.下列计算正确的是()A.2a2+3a3=5a5 B.a6÷a2=a3C. D.(a﹣3)﹣2=a﹣59.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④10.如图,为线段上任意一点(不与、重合),在同侧分别是等边三角形和等边三角形,与交于点,与交于点,与交于点,连接.以下五个结论:①;②;③;④;⑤.正确的结论有()A.5个 B.4个 C.3个 D.2个11.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.12.判断以下各组线段为边作三角形,可以构成直角三角形的是()A.6,15,17 B.7,12,15 C.13,15,20 D.7,24,25二、填空题(每题4分,共24分)13.数0.0000046用科学记数法表示为:__________.14.若关于x的不等式组有4个整数解,那么a的取值范围是_____.15.在平面直角坐标系中,点关于轴的对称点是__________.16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.17.如图,在中,,,边的垂直平分线交,于,,则的周长为__________.18.计算______________三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.20.(8分)在△ABC中,高AD和BE所在直线交于点H,且BH=AC,则∠ABC=____.21.(8分)如图(1)是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按照图(2)的形状拼成一个正方形.(1)请用两种不同的方法求图(2)中阴影部分的面积。方法1.________________;方法2:______________.请你写出下列三个式子:之间的等量关系___________;(2)根据(1)题中的等量关系,解决下列问题:已知,求;(3)实际上有许多恒等式可以用图形的面积来表示,如图(3),它表示的恒等式是___________.22.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.23.(10分)如图已知的三个顶点坐标分别是,,.(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标,并用恰当的方式表示线段上任意一点的坐标.24.(10分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.25.(12分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.26.(1)计算:;(2)先化简,再求值:,其中,.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=,证明∠BAE=∠ABC,即可证得AE∥BC,得出,即可求出BE.【详解】延长BE和CA交于点F∵绕点逆时针旋转得到△AED∴∠CAE=∴∠CAB+∠BAE=又∵∠CAB+∠ABC=∴∠BAE=∠ABC∴AE∥BC∴∴AF=AC=2,FC=4∴BF=∴BE=EF=BF=故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.3、A【解析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4、D【分析】根据垂直定义求出∠CFD=∠AEB=90°,由已知,再根据全等三角形的判定定理推出即可.【详解】添加的条件是AB=CD;理由如下:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴(HL).故选:D.【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.5、C【分析】根据AB=AC,利用三角形内角和定理求出∠ABC、∠ACB的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.【详解】解:∵AB=AC,

∴∠ABC=∠ACB,

∵∠A=30°,

∴∠ABC=∠ACB=(180°-30°)=75°,

∵以B为圆心,BC长为半径画弧,

∴BE=BD=BC,

∴∠BDC=∠ACB=75°,

∴∠CBD=180°-75°-75°=30°,

∴∠DBE=75°-30°=45°,

∴∠BED=∠BDE=(180°-45°)=67.5°.

故选:C.【点睛】本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求得答案.6、C【分析】根据全等三角形的判定定理逐一判断即可.【详解】解:A.若,利用SSS可证,故本选项不符合题意;B.若,利用SAS可证,故本选项不符合题意;C.若,两边及其一边的对角对应相等不能判定两个三角形全等,故本选项符合题意;D.若,利用ASA可证,故本选项不符合题意.故选C.【点睛】此题考查的是判定全等三角形所需的条件,掌握全等三角形的各个判定定理是解决此题的关键.7、D【分析】根据同底数幂的乘法、幂的乘方、积的乘方等知识分别计算得出答案.【详解】A.a3·a4=a7,计算错误,不合题意;B.(a3)2=a6,计算错误,不合题意;C.(-3a2)3=-27a6,计算错误,不合题意;D.(-a2)3=-a6,计算正确,符合题意.故选:D.【点睛】此题主要考查了同底数幂的乘法、幂的乘方、积的乘方等知识,正确掌握相关运算法则是解题关键.8、C【分析】逐一进行判断即可.【详解】2a2+3a3不是同类项,不能合并,故选项A错误;a6÷a2=a4,故选项B错误;()3=,故选项C正确;(a﹣3)﹣2=a6,故选项D错误;故选:C.【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方和幂的乘方,掌握同底数幂的除法,积的乘方和幂的乘方运算法则是解题的关键.9、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.10、B【解析】由已知条件可知根据可证得,进而可以推导出、、、等结论.【详解】∵和是等边三角形∴,,∴∴即∴在和中,∴∴,,∵,∴在中∴∴,∴是等边三角形∴∴∵∴∵在中,,∴∵∴∴正确的结论是:,、、故选:B【点睛】本题考查了三角形、等边三角形、全等三角形的相关内容,其结论都是在的基础上形成的结论,说明证三角形全等是解题的关键,既可以充分揭示数学问题的层次,又可以考查学生的思维层次.11、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.12、D【解析】根据勾股定理的逆定理逐一判断即可.【详解】A.因为62+152≠172,所以以6,15,17为边的三角形不是直角三角形,故A不符合题意;B.因为72+122≠152,所以以7,12,15为边的三角形不是直角三角形,故B不符合题意;C.因为132+152≠202,所以以13,15,20为边的三角形不是直角三角形,故C不符合题意D.因为72+242=252,所以以7,24,25为边的三角形是直角三角形,故D符合题意;故选D.【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】根据科学记数法的表示方法解答即可.【详解】解:0.0000046=.故答案为:.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、【分析】不等式组整理后,根据4个整数解确定出a的范围即可.【详解】解:不等式组整理得:,

解得:1<x<-a-2,

由不等式组有4个整数解,得到整数解为2,3,4,5,

∴5<-a-2≤6,

解得:-8≤a<-7,

故答案为:-8≤a<-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.15、【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:∵点,∴与点P关于x轴对称的点的坐标为,故答案为:.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.16、12.1【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×1×1=12.1,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×1×1=12.1,∴四边形ABCD的面积为12.1,故答案为12.1.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题17、12【分析】先根据线段垂直平分线的性质可得,通过观察图形可知周长等于,再根据已知条件代入数据计算即可得解.【详解】∵是的垂直平分线∴∵,∴的周长故答案是:【点睛】本题涉及到的知识点主要是线段垂直平分线的性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.18、【分析】先用幂的运算公式计算乘法,再合并同类项,即可得出答案.【详解】原式=,故答案为:.【点睛】本题考查的是整式的混合运算,需要熟练掌握整式混合运算的运算法则.三、解答题(共78分)19、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如图1;②当MN∥OF时,如图2,利用特殊三角函数值求解即可.【详解】(1)A、B、C的坐标分别为:(0,3)、(3,0);OC=BC,则点C是AB的中点,则点C的坐标为:(,);故AC=AB=6=3;(2)点A、B、C的坐标分别为:(0,3)、(3,0)、(,);点D、E、G的坐标分别为:(﹣,0)、(﹣,4)、(2,1);i)设s、t的表达式为:s=kt+b,当t=DN=时,s=EM=EA=2,即点(,2);当t=OD=时,s=EG=6,即点(,6);将点(,2)和点(,6)代入s=kt+b并解得:函数的表达式为:y=t﹣2…①;ii)直线AB的倾斜角∠ABO=α=30°,EB=8,BD=4,DE=4,EM=s、DN=t,①当MN∥OC时,如图1,则∠MNB=∠COB=∠CBO=α=30°,MN=BM=BE﹣EM=8﹣s,NH=BN=(BD﹣DN)=(4﹣t),cos∠MNH==…②;联立①②并解得:s=;②当MN∥OF时,如图2,故点M作MG⊥ED角ED于点G,作NH⊥AG于点H,作AR⊥ED于点R,则∠HNM=∠RAE=∠EBD=α=30°,HN=GD=ED﹣EG=4﹣EMcos30°=4﹣s,MH=MG﹣GH=MEcos30°﹣t=s﹣t,tanα==…③;联立①③并解得:s=;从图象看MN不可能平行于BC;综上,s=或.【点睛】本题考查了直线解析式的动点问题,掌握直角三角形斜边中线定理、两点之间的距离公式、直线解析式的解法、平行线的性质、特殊三角函数值是解题的关键.20、45°或135°【分析】根据题意画出三个图形,证,推出,推出,根据三角形内角和定理和等腰三角形的性质求出,即可求出答案.【详解】解:分为三种情况:①如图1,、是的高,,,,,,在和中,,,,,②如图2,,,,,,在和中,,,,,,,;③高和所在的直线交于点,,,,,在和中,,,,故答案:45°或135°.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定,垂直定义,三角形的内角和定理等知识点的应用,用了分类讨论思想.21、(1)(m-n)2,,;(2)1;(3)【分析】(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释;(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2,(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)对a,b数值变换后的几何图解法,充分利用了数形结合的思想方法;(3)图③的面积计算也有两种方法,方法一是大长方形(长为的2m+n,宽为m+n)的面积是(2m+n)(m+n),方法二是组成大长方形的各个小长方形或正方形的面积和等于大长方形的面积,故而得到了代数恒等式.【详解】(1)方法1:阴影部分是一个正方形,边长为m-n,根据阴影部分正方形面积计算公式可得S阴=(m-n)2,方法2:大正方形边长为m+n,面积是:(m+n)2,四个长为m,宽为n的长方形的面积是4mn,阴影部分的面积是大正方形的面积减去四个长方形的面积S阴=(m+n)2-4mn,方法1与方法2均为求图②中阴影部分的面积,所以结果相等,即(m-n)2=(m+n)2-4mn,故答案为:(m-n)2,,;(2)(a+b)2-4ab=(a-b)2,(a+b)2=(a-b)2+4ab,=52-4×6=25-24=1∴(a+b)2=1;(3)计算图③的面积方法一是看作一个完整的长方形长为(m+n)宽为(2m+n),面积是:(m+n)(2m+n)方法二是:组成图③的各部分图形:2个边长为m的正方形的面积2m2,3个长为m,宽为n的长方形的面积即3mn,1个边长为n的正方形的面积n2,他们的面积和是:2m2+3mn+n2,方法一和方法二的计算结果相等即为:,故答案为:.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力.22、(1)证明见解析;(2)△APQ是等边三角形.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.23、(1)图见解析;(2)图见解析;(3)的坐标为;线段上任意一点的坐标为,其中.【分析】(1)先利用平移的性质求出的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出的坐标,再顺次连接即可得;(3)由(1)中即可知的坐标,再根据线段所在直线的函数表达式即可得.【详解】(1)向上平移4个单位长度的对应点坐标分别为,即,顺次连接可得到,画图结果如图所示;(2)关于y轴对称的对应点坐标分别为,顺次连接可得到,画图结果如图所示;(3)由(1)可知,的坐标为线段所在直线的函数表达式为则线段上任意一点的坐标为,其中.【点睛】本题考查了画平移图形、画轴对称图形、点坐标的性质等知识点,依据题意求出各点经过平移、轴对称后的对应点的坐标是解题关键.24、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论